Research Article
BibTex RIS Cite

Antiproliferative properties and evaluation of antioxidant of different cornelian cherry genotypes and analysis of phenolic and sugar compounds by HPLC

Year 2023, Volume: 51 Issue: 1, 57 - 70, 01.01.2023
https://doi.org/10.15671/hjbc.1065317

Abstract

Bu çalışmanın amacı, kızılcık meyvelerinin kimyasal bileşimi (C vitamini, bireysel fenolik ve şeker bileşikleri) ve antioksidan kapasitesinin yanında, meyve ekstrelerinin sağlıklı (L-929) ve akciğer kanseri (A-549) hücreleri üzerindeki sitotoksik etkisini araştırmaktır. Türkiye'de aynı koşullarda yetiştirilen on üç kızılcık (Cornus mas L.) genotipi meyve örnekleri ASE tekniği ile optimum koşullarda ekstrakte edildikten sonra kimyasal bileşim, HPLC-DAD-RID ile analiz edildi. Antioksidan kapasitesi, toplam fenolik ve toplam antosiyanin içeriği spektrofotometrik yöntemler kullanılarak belirlendi. Sitotoksik etkiler, 48 saat boyunca L-929 ve A-549 hücre hatlarında MTT testi ile değerlendirildi. Meyve ekstraktlarının L-929 sağlıklı fare fibroblast hücreleri üzerinde toksik etkisi gözlenmezken, A-549 akciğer kanseri hücrelerinde hücre proliferasyonunu (yaklaşık %50) azalttığı belirlendi. A-549 hücreleri üzerindeki antioksidan kapasite ve sitotoksik etkiler için öne çıkan genotipler sırasıyla 44-03, 44-20, 44-21, 77-09 ve 44-21, 44-16, 77-05 olduğu belirlendi. Elde edilen sonuçlar, genotipler (p ≤ 0.05) arasında önemli farklılıklar olduğunu ve kızılcık meyvelerinin önemli bir antioksidan kapasiteye ve antiproliferatif etki potansiyeline sahip olduğunu ortaya koymuştur.

Project Number

TDK-2018-1497

References

  • 1. G. Shui, LP. Leong (2006) Residue from star fruit as a valuable source for functional food ingredients and antioxidant nutraceuticals. Food Chem 97: 277–284. https://doi.org/10.1016/j.foodchem.2005.03.048
  • 2. E. Büyüktuncel (2013) Toplam fenolik içerik ve antioksidan kapasite tayininde kullanilan baslica spektrofotometrik yöntemler. Marmara Pharm J 2: 93–103. https://doi.org/10.12991/201317377
  • 3. A, Ekbul (2004) Diyetsel Polifenoller ve Kardiyovasküler Sistem. Turkiye Klin J Cardiol 17: 48–54.
  • 4. K. Šavikin, G Zdunić, T Janković, T Stanojković, Z Juranić, N Menković (2009) In vitro cytotoxic and antioxidative activity of Cornus mas and Cotinus coggygria. Nat Prod Res 23: 1731–1739, doi:10.1080/14786410802267650. https://doi.org/10.1080/14786410802267650
  • 5. BM. Popović, D. Štajner, K. Slavko, B. Sandra (2012) Antioxidant capacity of cornelian cherry (Cornus mas L.) comparison between permanganate reducing antioxidant capacity and other antioxidant methods. Food Chem 134: 734–741. https://doi.org/10.1016/j.foodchem.2012.02.170
  • 6. S Celik, I Bakirci, IG Sat (2006) Physicochemical and organoleptic properties of yogurt with cornelian cherry paste. Int J Food Property 9: 401–408. https://doi.org/10.1080/10942910600596258
  • 7. S Tural, I Koca (2008) Physico-chemical and antioxidant properties of cornelian cherry fruits (Cornus mas L.) grown in Turkey. Sci Hort 116: 362-366. https://doi.org/10.1016/j.scienta.2008.02.003
  • 8. BM De, D Donno, MG Mellano, L Riondato, EN Rakotoniaina, GL Beccaro (2018) Cornus mas (L.) fruit as a potential source of natural health-promoting compounds: Physico-chemical characterization of bioactive components. Plant Foods Hum Nutr 73: 89–94. https://doi.org/10.1007/s11130-018-0663-4
  • 9. S Cosmulescu I Trandafir, F Cornescu (2019) Antioxidant capacity, total phenols, total flavonoids, and a color component of cornelian cherry (Cornus mas L.) wild genotypes. Not Bot Horti Agrobo 47: 390-394. https://doi.org/10.15835/nbha47111375
  • 10. GE Pantelidis, M Vasilakakis, GA Manganaris, G Diamantidis (2007) Antioxidant capacity, phenol, anthocyanin and ascorbic acid contents in raspberries, blackberries, red currants, gooseberries, and cornelian cherries. Food Chem 102: 777-2783. https://doi.org/10.1016/j.foodchem.2006.06.021
  • 11. B Moldovan, A Filip, S Clichici, R Suharoschi, P Bolfa, L David (2016) Antioxidant capacity of cornelian cherry (Cornus mas L.) fruits extract and the in vivo evaluation of ıts anti-inflammatory effects. J Functional Foods 26: 77- 87. https://doi.org/10.1016/j.jff.2016.07.004
  • 12. H Hamid, H Yousef, H Jafar, A Mohammad (2011) Antioxidant capacity and phytochemical properties of cornelian cherry (Cornus mas L.) genotypes in Iran. Sci Hort 129: 459–463. https://doi.org/10.1016/j.scienta.2011.04.017
  • 13. AS Milenkovic-Andjelkovic, MZ Andjelkovic, AN Radovanovic, BC Radovanovic, V Nikolic (2015) Phenol composition, DPPH radical scavenging and antimicrobial activity of cornelian cherry (Cornus mas) fruit and leaf extracts. Hem Ind 69: 331–337. https://doi.org/10.2298/HEMIND140216046M
  • 14. S Erdoğan, S Erdemoğlu (2011) Evaluation of polyphenol contents in differently processed apricots using accelerated solvent extraction followed by high-performance liquid chromatography–diode array detector. Int J Food Sci Nutr 62: 729–739. https://doi.org/10.3109/09637486.2011.573469
  • 15. JY Hwang, YS Shue, HM Chang (2001) Antioxidative activity of roasted and defatted peanut kernels. Food Res Int 34: 639–647. https://doi.org/10.1016/S0963-9969(01)00083-7
  • 16. GC Yen, CY Hung (2000) Effects of alkaline and heat treatment on antioxidative activity and total phenolics of extracts from Hsian-Tsao (Mesona procumbens Hemsl.). Food Res Int 33: 487-492. https://doi.org/10.1016/S0963-9969(00)00073-9
  • 17. NM Karaaslan (2012) Kiraz (Prunus avium), Çilek (Fragaria vesca) ve Kızılcık (Cornus Mas L.) Meyvelerindeki Antosiyanin Bileşiklerinin HPLC-ESI-MS İle Tayini ve Karakterizasyonu. PhD. Thesis, Faculty of Science, Fırat University, Elazığ, Turkey.
  • 18. B Cemeroğlu (2007) Gıda Analizleri. Gıda Teknolojisi Yayınları. No:34 Ankara. s: 168-171.
  • 19. FS Hosseini, M Noroozi Karimabad, MR Hajizadeh, A Khoshdel, SK Falahati-Pour, MR Mirzaei, SM Mirmohamadi, M Mahmoodi (2019) Evaluating of Induction of Apoptosis by Cornus mas L. Extract in the Gastric Carcinoma Cell Line (AGS). Asian Pacific J Cancer Prev 20: 123–130. https://doi.org/10.31557/APJCP.2019.20.1.123
  • 20. Y Baran, C Oztekin, EY Bassoy (2010) Combination of Fludarabine and Imatinib Induces Apoptosis Synergistically Through Loss of Mitochondrial Membrane Potential and Increases in Caspase-3 Enzyme Activity in Human K562 Chronic Myeloid Leukemia Cells. Cancer Invest 28: 623–628. https://doi.org/10.3109/07357901003631056
  • 21. Y Baran, AU Ural, U Gunduz (2007) Mechanisms of cellular resistance to imatinib in human chronic myeloid leukemia cells. Hematology 12: 497–503. https://doi.org/10.1080/10245330701384179
  • 22. T Stiropoulos, A Petridis, N Koutinas, I Therios (2011) ‘Ntoulia 1’ and ‘Ntoulia 2’ cornelian cherries (Cornus mas L.). Hort Science 46: 955-957. https://doi.org/10.21273/HORTSCI.46.6.955
  • 23. AZ Kucharska, AS Letowska (2011) Morphological, physical & chemical, and antioxidant profiles of Polish varieties of cornelian cherry fruit (Cornus mas L.). ŻYWNOŚĆ Nauka Technologia Jakość 3: 78 – 89. https://doi.org/10.15193/zntj/2011/76/078-089
  • 24. J Cetkovska, P Divis, J Vespalcova, J Porizka, V Reznicek (2015) Basic nutritional properties of cornelian cherry (Cornus mas L.) cultivars grown in the Czech Republic. A Alim 44: 549-557. https://doi.org/10.1556/AAlim.2014.0013
  • 25. B Yousefi, M Abasi, MM Abbasi, R Jahanban-Esfahlan (2015) Antiproliferative properties of Cornus mas fruit in different human cancer cells. Asian Pac J Cancer Prev 16: 5727-5731. https://doi.org/10.7314/apjcp.2015.16.14.5727
  • 26. S Klymenko, AZ Kucharska, A Sokół-Łętowska, N Piórecki (2019) Antioxidant activities and phenolic compounds in fruits of cultivars of cornelian cherry (Cornus mas L.). Agr Bio Div Impr Nut Health Life Qual 484–499. https://doi.org/10.15414/agrobiodiversity.2019.2585-8246.484-499
  • 27. NK Kantar (2019) Kızılcık Meyvesinden (Cornus mas) Ohmik Destekli Mikrodalga ve Ultrasonik Yöntemleri İle Fenolik Bileşiklerin Ekstraksiyonu. PhD. Thesis, Faculty of Engineering, Ankara University, Ankara, Turkey.
  • 28. BC Radovanovic, ASM Andelkovic, AB Radovanovic, MZ Andelkovic (2013) Antioxidant and antimicrobial activity of polyphenol extracts from wild berry fruits grown in Southeast Serbia. Tropical J Pharmaceutical Res 12: 813-839. https://doi.org/10.4314/tjpr.v12i5.23
  • 29. G Tian, T Zhang, F Yang, Y Ito (2000) Separation of gallic acid from Cornus officinalis Sieb. Et Zucc by High-Speed Counter-Current Chromatography. J Chromatogr A 886: 309–312. https://doi.org/10.1016/S0021-9673(00)00480-5
  • 30. W Du, H Cai, M Wang, X Ding, H Yang, B Cai (2008) Simultaneous determination of six active components in crude and processed Fructus corni by High-Performance Liquid Chromatography. J Pharm Biomed Anal 48: 194–197. https://doi.org/10.1016/j.jpba.2008.04.021
  • 31. J Sochor, T Jurikova, S Ercisli, J Mlcek, M Baron, S Balla, SO Yılmaz, T Necas (2014) Charcterization of cornelian cherry (Cornus mas L.) genotypes–genetic resources for food production in the Czech Republic. Genetika 46: 915–924. https://doi.org/10.2298/GENSR1403915S
  • 32. G Cao, Y Zhang, J Feng, H Cai, C Zhang, M Ding, X Cong, B Cai (2011) A rapid and sensitive assay for determining the main components in processed fructus corni by UPLC-Q-TOF-MS. Chromatographia 73: 135–141. https://doi.org/10.1007/s10337-010-1825-1
  • 33. MH Lin, HK Liu, WJ Huang, CC Huang, TH Wu, FL Hsu (2011) Evaluation of the potential hypoglycemic and beta-cell protective constituents ısolated from corni fructus to tackle ınsulin-dependent diabetes mellitus. J Agric Food Chem 59: 7743–7751. https://doi.org/10.1021/jf201189r
  • 34. S Cosmulescu, I Trandafir, V Nour (2017) Phenolic acids and flavonoids profiles of extracts from edible wild fruits and their antioxidant properties. Int J Food Prop 20: 3124–3134. https://doi.org/10.1080/10942912.2016.1274906
  • 35. Z Liu, ZY Zhu, H Zhang, GG Tan, XF Chen, YF Chai (2011) Qualitative and quantitative analysis of Fructus corni using ultra sound assisted microwave extraction and high-performance liquid chromatography coupled with diode array UV detection and time-of-flight mass spectrometry. J Pharm Biomed Anal 55: 557–562. https://doi.org/10.1016/j.jpba.2011.02.007
  • 36. H Cai, G Cao, B Cai (2013) Rapid simultaneous ıdentification and determination of the multiple compounds in crude fructus corni and its processed products by HPLC– MS/MS with multiple reaction monitoring mode. Pharm Biol 51: 273–278. https://doi.org/10.3109/13880209.2012.720689
  • 37. S Deng, BJ West, CJ Jensen (2013) UPLC-TOF-MS characterization and ıdentification of bioactive iridoids in Cornus mas fruit. Journal of Analytical Methods in Chemistry. Article ID 710972, 7 pages.
  • 38. A Begic-Akagic, P Drkenda, A Vranac, P Orazem, M Hudina (2013) Influence of growing region and storage time on phenolic profile of cornelian cherry jam and fruit. Eur J Hort Sci 78: 30–39.
  • 39. P Drkenda, A Spahic, A Begic-Akagic, F Gasi, A Vranac, M Hudina, M Blanke (2014) Pomological characteristics of some autochthonous genotypes of cornelian cherry (Cornus mas L.) in Bosnia and Herzegovina. Erwerbs-Obstbau 56: 59–66. https://doi.org/10.1007/s10341-014-0203-9
  • 40. JM Harnly, RF Doherty, GR A Beecher, JM Holden (2006) Flavonoid content of U.S. fruits, vegetables, and nuts. J Agric Food Chem 54: 9966−9977. https://doi.org/10.1021/jf061478a
  • 41. S Erdoğan (2008) Çeşitli Kayısı Örneklerinde Bakır Spesiasyonu (Türlendirme). PhD. Thesis, Faculty of Science, İnönü University, Malatya, Turkey.
  • 42. IB Perova, AA Zhogova, AV Poliakova, KI Éller, GV Ramenskaia, IA Samylina (2014) Biologically active substances of cornelian cherry fruits (Cornus mas L.). Vopr Pitan 83: 86‐94.
  • 43. NT Petkova, MH Ognyanov (2018) Phytochemical characteristics and in vitro antioxidant activity of fresh, dried, and processed fruits of cornelian cherries (Cornus mas L.). Bulgarian Chem Communications 50: 302 –307.
  • 44. T Tarko, A Duda-Chodak, P Satora, P Sroka, P Pogoń, J Machalica (2014) Chaenomeles japonica, Cornus mas, Morus nigra fruits characteristics and their processing potential. J Food Sci Technol 51: 3934–3941. https://doi.org/10.1007/s13197-013-0963-5
  • 45. H Antolak, A Czyzowska, M Sakac, A Misan, O Duragic, D Kregiel (2017) Phenolic compounds contained in little-known wild fruits as antiadhesive agents against the beverage-spoiling bacteria Asia spp, Molecules 22: 1256. https://doi.org/10.3390/molecules22081256
  • 46. A Kourpeti-Tiptiri, E Fitsiou, K Spyridopoulou (2019) Evaluation of antioxidant and antiproliferative properties of Cornus mas L. fruit juice. Antioxidants 8: 377. https://doi.org/10.3390/antiox8090377
  • 47. FS Hosseini, MN Karimabad, MR Hajizadeh, A Khoshdel (2018) Evaluating of induction of apoptosis by Cornus mas L. extract in the Gastric Carcinoma Cell Line (AGS). Asian Pac J Cancer Prev 20: 123-130. https://doi.org/10.31557/APJCP.2019.20.1.123
  • 48. Y Lu, BN Pekerti, ZS Toh, F Broom, G Savage, SQ Liu, D Huang (2017) Physicochemical parameters and proanthocyanidin profiles of cranberries cultivated in New Zealand. J Food Compos Anal 63: 1-7. https://doi.org/10.1016/j.jfca.2017.07.002
  • 49. PN Brown, SJ Murch, P Shipley (2012) Phytochemical diversity of cranberry (Vaccinium macrocarpon Aiton) cultivars by anthocyanin determination and metabolomic profiling with chemometric analysis. J Agric Food Chem 60: 261-271. https://doi.org/10.1021/jf2033335
Year 2023, Volume: 51 Issue: 1, 57 - 70, 01.01.2023
https://doi.org/10.15671/hjbc.1065317

Abstract

Supporting Institution

İnönü Üniversitesi

Project Number

TDK-2018-1497

References

  • 1. G. Shui, LP. Leong (2006) Residue from star fruit as a valuable source for functional food ingredients and antioxidant nutraceuticals. Food Chem 97: 277–284. https://doi.org/10.1016/j.foodchem.2005.03.048
  • 2. E. Büyüktuncel (2013) Toplam fenolik içerik ve antioksidan kapasite tayininde kullanilan baslica spektrofotometrik yöntemler. Marmara Pharm J 2: 93–103. https://doi.org/10.12991/201317377
  • 3. A, Ekbul (2004) Diyetsel Polifenoller ve Kardiyovasküler Sistem. Turkiye Klin J Cardiol 17: 48–54.
  • 4. K. Šavikin, G Zdunić, T Janković, T Stanojković, Z Juranić, N Menković (2009) In vitro cytotoxic and antioxidative activity of Cornus mas and Cotinus coggygria. Nat Prod Res 23: 1731–1739, doi:10.1080/14786410802267650. https://doi.org/10.1080/14786410802267650
  • 5. BM. Popović, D. Štajner, K. Slavko, B. Sandra (2012) Antioxidant capacity of cornelian cherry (Cornus mas L.) comparison between permanganate reducing antioxidant capacity and other antioxidant methods. Food Chem 134: 734–741. https://doi.org/10.1016/j.foodchem.2012.02.170
  • 6. S Celik, I Bakirci, IG Sat (2006) Physicochemical and organoleptic properties of yogurt with cornelian cherry paste. Int J Food Property 9: 401–408. https://doi.org/10.1080/10942910600596258
  • 7. S Tural, I Koca (2008) Physico-chemical and antioxidant properties of cornelian cherry fruits (Cornus mas L.) grown in Turkey. Sci Hort 116: 362-366. https://doi.org/10.1016/j.scienta.2008.02.003
  • 8. BM De, D Donno, MG Mellano, L Riondato, EN Rakotoniaina, GL Beccaro (2018) Cornus mas (L.) fruit as a potential source of natural health-promoting compounds: Physico-chemical characterization of bioactive components. Plant Foods Hum Nutr 73: 89–94. https://doi.org/10.1007/s11130-018-0663-4
  • 9. S Cosmulescu I Trandafir, F Cornescu (2019) Antioxidant capacity, total phenols, total flavonoids, and a color component of cornelian cherry (Cornus mas L.) wild genotypes. Not Bot Horti Agrobo 47: 390-394. https://doi.org/10.15835/nbha47111375
  • 10. GE Pantelidis, M Vasilakakis, GA Manganaris, G Diamantidis (2007) Antioxidant capacity, phenol, anthocyanin and ascorbic acid contents in raspberries, blackberries, red currants, gooseberries, and cornelian cherries. Food Chem 102: 777-2783. https://doi.org/10.1016/j.foodchem.2006.06.021
  • 11. B Moldovan, A Filip, S Clichici, R Suharoschi, P Bolfa, L David (2016) Antioxidant capacity of cornelian cherry (Cornus mas L.) fruits extract and the in vivo evaluation of ıts anti-inflammatory effects. J Functional Foods 26: 77- 87. https://doi.org/10.1016/j.jff.2016.07.004
  • 12. H Hamid, H Yousef, H Jafar, A Mohammad (2011) Antioxidant capacity and phytochemical properties of cornelian cherry (Cornus mas L.) genotypes in Iran. Sci Hort 129: 459–463. https://doi.org/10.1016/j.scienta.2011.04.017
  • 13. AS Milenkovic-Andjelkovic, MZ Andjelkovic, AN Radovanovic, BC Radovanovic, V Nikolic (2015) Phenol composition, DPPH radical scavenging and antimicrobial activity of cornelian cherry (Cornus mas) fruit and leaf extracts. Hem Ind 69: 331–337. https://doi.org/10.2298/HEMIND140216046M
  • 14. S Erdoğan, S Erdemoğlu (2011) Evaluation of polyphenol contents in differently processed apricots using accelerated solvent extraction followed by high-performance liquid chromatography–diode array detector. Int J Food Sci Nutr 62: 729–739. https://doi.org/10.3109/09637486.2011.573469
  • 15. JY Hwang, YS Shue, HM Chang (2001) Antioxidative activity of roasted and defatted peanut kernels. Food Res Int 34: 639–647. https://doi.org/10.1016/S0963-9969(01)00083-7
  • 16. GC Yen, CY Hung (2000) Effects of alkaline and heat treatment on antioxidative activity and total phenolics of extracts from Hsian-Tsao (Mesona procumbens Hemsl.). Food Res Int 33: 487-492. https://doi.org/10.1016/S0963-9969(00)00073-9
  • 17. NM Karaaslan (2012) Kiraz (Prunus avium), Çilek (Fragaria vesca) ve Kızılcık (Cornus Mas L.) Meyvelerindeki Antosiyanin Bileşiklerinin HPLC-ESI-MS İle Tayini ve Karakterizasyonu. PhD. Thesis, Faculty of Science, Fırat University, Elazığ, Turkey.
  • 18. B Cemeroğlu (2007) Gıda Analizleri. Gıda Teknolojisi Yayınları. No:34 Ankara. s: 168-171.
  • 19. FS Hosseini, M Noroozi Karimabad, MR Hajizadeh, A Khoshdel, SK Falahati-Pour, MR Mirzaei, SM Mirmohamadi, M Mahmoodi (2019) Evaluating of Induction of Apoptosis by Cornus mas L. Extract in the Gastric Carcinoma Cell Line (AGS). Asian Pacific J Cancer Prev 20: 123–130. https://doi.org/10.31557/APJCP.2019.20.1.123
  • 20. Y Baran, C Oztekin, EY Bassoy (2010) Combination of Fludarabine and Imatinib Induces Apoptosis Synergistically Through Loss of Mitochondrial Membrane Potential and Increases in Caspase-3 Enzyme Activity in Human K562 Chronic Myeloid Leukemia Cells. Cancer Invest 28: 623–628. https://doi.org/10.3109/07357901003631056
  • 21. Y Baran, AU Ural, U Gunduz (2007) Mechanisms of cellular resistance to imatinib in human chronic myeloid leukemia cells. Hematology 12: 497–503. https://doi.org/10.1080/10245330701384179
  • 22. T Stiropoulos, A Petridis, N Koutinas, I Therios (2011) ‘Ntoulia 1’ and ‘Ntoulia 2’ cornelian cherries (Cornus mas L.). Hort Science 46: 955-957. https://doi.org/10.21273/HORTSCI.46.6.955
  • 23. AZ Kucharska, AS Letowska (2011) Morphological, physical & chemical, and antioxidant profiles of Polish varieties of cornelian cherry fruit (Cornus mas L.). ŻYWNOŚĆ Nauka Technologia Jakość 3: 78 – 89. https://doi.org/10.15193/zntj/2011/76/078-089
  • 24. J Cetkovska, P Divis, J Vespalcova, J Porizka, V Reznicek (2015) Basic nutritional properties of cornelian cherry (Cornus mas L.) cultivars grown in the Czech Republic. A Alim 44: 549-557. https://doi.org/10.1556/AAlim.2014.0013
  • 25. B Yousefi, M Abasi, MM Abbasi, R Jahanban-Esfahlan (2015) Antiproliferative properties of Cornus mas fruit in different human cancer cells. Asian Pac J Cancer Prev 16: 5727-5731. https://doi.org/10.7314/apjcp.2015.16.14.5727
  • 26. S Klymenko, AZ Kucharska, A Sokół-Łętowska, N Piórecki (2019) Antioxidant activities and phenolic compounds in fruits of cultivars of cornelian cherry (Cornus mas L.). Agr Bio Div Impr Nut Health Life Qual 484–499. https://doi.org/10.15414/agrobiodiversity.2019.2585-8246.484-499
  • 27. NK Kantar (2019) Kızılcık Meyvesinden (Cornus mas) Ohmik Destekli Mikrodalga ve Ultrasonik Yöntemleri İle Fenolik Bileşiklerin Ekstraksiyonu. PhD. Thesis, Faculty of Engineering, Ankara University, Ankara, Turkey.
  • 28. BC Radovanovic, ASM Andelkovic, AB Radovanovic, MZ Andelkovic (2013) Antioxidant and antimicrobial activity of polyphenol extracts from wild berry fruits grown in Southeast Serbia. Tropical J Pharmaceutical Res 12: 813-839. https://doi.org/10.4314/tjpr.v12i5.23
  • 29. G Tian, T Zhang, F Yang, Y Ito (2000) Separation of gallic acid from Cornus officinalis Sieb. Et Zucc by High-Speed Counter-Current Chromatography. J Chromatogr A 886: 309–312. https://doi.org/10.1016/S0021-9673(00)00480-5
  • 30. W Du, H Cai, M Wang, X Ding, H Yang, B Cai (2008) Simultaneous determination of six active components in crude and processed Fructus corni by High-Performance Liquid Chromatography. J Pharm Biomed Anal 48: 194–197. https://doi.org/10.1016/j.jpba.2008.04.021
  • 31. J Sochor, T Jurikova, S Ercisli, J Mlcek, M Baron, S Balla, SO Yılmaz, T Necas (2014) Charcterization of cornelian cherry (Cornus mas L.) genotypes–genetic resources for food production in the Czech Republic. Genetika 46: 915–924. https://doi.org/10.2298/GENSR1403915S
  • 32. G Cao, Y Zhang, J Feng, H Cai, C Zhang, M Ding, X Cong, B Cai (2011) A rapid and sensitive assay for determining the main components in processed fructus corni by UPLC-Q-TOF-MS. Chromatographia 73: 135–141. https://doi.org/10.1007/s10337-010-1825-1
  • 33. MH Lin, HK Liu, WJ Huang, CC Huang, TH Wu, FL Hsu (2011) Evaluation of the potential hypoglycemic and beta-cell protective constituents ısolated from corni fructus to tackle ınsulin-dependent diabetes mellitus. J Agric Food Chem 59: 7743–7751. https://doi.org/10.1021/jf201189r
  • 34. S Cosmulescu, I Trandafir, V Nour (2017) Phenolic acids and flavonoids profiles of extracts from edible wild fruits and their antioxidant properties. Int J Food Prop 20: 3124–3134. https://doi.org/10.1080/10942912.2016.1274906
  • 35. Z Liu, ZY Zhu, H Zhang, GG Tan, XF Chen, YF Chai (2011) Qualitative and quantitative analysis of Fructus corni using ultra sound assisted microwave extraction and high-performance liquid chromatography coupled with diode array UV detection and time-of-flight mass spectrometry. J Pharm Biomed Anal 55: 557–562. https://doi.org/10.1016/j.jpba.2011.02.007
  • 36. H Cai, G Cao, B Cai (2013) Rapid simultaneous ıdentification and determination of the multiple compounds in crude fructus corni and its processed products by HPLC– MS/MS with multiple reaction monitoring mode. Pharm Biol 51: 273–278. https://doi.org/10.3109/13880209.2012.720689
  • 37. S Deng, BJ West, CJ Jensen (2013) UPLC-TOF-MS characterization and ıdentification of bioactive iridoids in Cornus mas fruit. Journal of Analytical Methods in Chemistry. Article ID 710972, 7 pages.
  • 38. A Begic-Akagic, P Drkenda, A Vranac, P Orazem, M Hudina (2013) Influence of growing region and storage time on phenolic profile of cornelian cherry jam and fruit. Eur J Hort Sci 78: 30–39.
  • 39. P Drkenda, A Spahic, A Begic-Akagic, F Gasi, A Vranac, M Hudina, M Blanke (2014) Pomological characteristics of some autochthonous genotypes of cornelian cherry (Cornus mas L.) in Bosnia and Herzegovina. Erwerbs-Obstbau 56: 59–66. https://doi.org/10.1007/s10341-014-0203-9
  • 40. JM Harnly, RF Doherty, GR A Beecher, JM Holden (2006) Flavonoid content of U.S. fruits, vegetables, and nuts. J Agric Food Chem 54: 9966−9977. https://doi.org/10.1021/jf061478a
  • 41. S Erdoğan (2008) Çeşitli Kayısı Örneklerinde Bakır Spesiasyonu (Türlendirme). PhD. Thesis, Faculty of Science, İnönü University, Malatya, Turkey.
  • 42. IB Perova, AA Zhogova, AV Poliakova, KI Éller, GV Ramenskaia, IA Samylina (2014) Biologically active substances of cornelian cherry fruits (Cornus mas L.). Vopr Pitan 83: 86‐94.
  • 43. NT Petkova, MH Ognyanov (2018) Phytochemical characteristics and in vitro antioxidant activity of fresh, dried, and processed fruits of cornelian cherries (Cornus mas L.). Bulgarian Chem Communications 50: 302 –307.
  • 44. T Tarko, A Duda-Chodak, P Satora, P Sroka, P Pogoń, J Machalica (2014) Chaenomeles japonica, Cornus mas, Morus nigra fruits characteristics and their processing potential. J Food Sci Technol 51: 3934–3941. https://doi.org/10.1007/s13197-013-0963-5
  • 45. H Antolak, A Czyzowska, M Sakac, A Misan, O Duragic, D Kregiel (2017) Phenolic compounds contained in little-known wild fruits as antiadhesive agents against the beverage-spoiling bacteria Asia spp, Molecules 22: 1256. https://doi.org/10.3390/molecules22081256
  • 46. A Kourpeti-Tiptiri, E Fitsiou, K Spyridopoulou (2019) Evaluation of antioxidant and antiproliferative properties of Cornus mas L. fruit juice. Antioxidants 8: 377. https://doi.org/10.3390/antiox8090377
  • 47. FS Hosseini, MN Karimabad, MR Hajizadeh, A Khoshdel (2018) Evaluating of induction of apoptosis by Cornus mas L. extract in the Gastric Carcinoma Cell Line (AGS). Asian Pac J Cancer Prev 20: 123-130. https://doi.org/10.31557/APJCP.2019.20.1.123
  • 48. Y Lu, BN Pekerti, ZS Toh, F Broom, G Savage, SQ Liu, D Huang (2017) Physicochemical parameters and proanthocyanidin profiles of cranberries cultivated in New Zealand. J Food Compos Anal 63: 1-7. https://doi.org/10.1016/j.jfca.2017.07.002
  • 49. PN Brown, SJ Murch, P Shipley (2012) Phytochemical diversity of cranberry (Vaccinium macrocarpon Aiton) cultivars by anthocyanin determination and metabolomic profiling with chemometric analysis. J Agric Food Chem 60: 261-271. https://doi.org/10.1021/jf2033335
There are 49 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Yılmaz Uğur 0000-0002-9040-4249

Emine Şalva 0000-0002-1159-5850

Fırat Karaat 0000-0002-4676-0721

Selim Erdoğan 0000-0002-9169-9771

Project Number TDK-2018-1497
Publication Date January 1, 2023
Acceptance Date June 7, 2022
Published in Issue Year 2023 Volume: 51 Issue: 1

Cite

APA Uğur, Y., Şalva, E., Karaat, F., Erdoğan, S. (2023). Antiproliferative properties and evaluation of antioxidant of different cornelian cherry genotypes and analysis of phenolic and sugar compounds by HPLC. Hacettepe Journal of Biology and Chemistry, 51(1), 57-70. https://doi.org/10.15671/hjbc.1065317
AMA Uğur Y, Şalva E, Karaat F, Erdoğan S. Antiproliferative properties and evaluation of antioxidant of different cornelian cherry genotypes and analysis of phenolic and sugar compounds by HPLC. HJBC. January 2023;51(1):57-70. doi:10.15671/hjbc.1065317
Chicago Uğur, Yılmaz, Emine Şalva, Fırat Karaat, and Selim Erdoğan. “Antiproliferative Properties and Evaluation of Antioxidant of Different Cornelian Cherry Genotypes and Analysis of Phenolic and Sugar Compounds by HPLC”. Hacettepe Journal of Biology and Chemistry 51, no. 1 (January 2023): 57-70. https://doi.org/10.15671/hjbc.1065317.
EndNote Uğur Y, Şalva E, Karaat F, Erdoğan S (January 1, 2023) Antiproliferative properties and evaluation of antioxidant of different cornelian cherry genotypes and analysis of phenolic and sugar compounds by HPLC. Hacettepe Journal of Biology and Chemistry 51 1 57–70.
IEEE Y. Uğur, E. Şalva, F. Karaat, and S. Erdoğan, “Antiproliferative properties and evaluation of antioxidant of different cornelian cherry genotypes and analysis of phenolic and sugar compounds by HPLC”, HJBC, vol. 51, no. 1, pp. 57–70, 2023, doi: 10.15671/hjbc.1065317.
ISNAD Uğur, Yılmaz et al. “Antiproliferative Properties and Evaluation of Antioxidant of Different Cornelian Cherry Genotypes and Analysis of Phenolic and Sugar Compounds by HPLC”. Hacettepe Journal of Biology and Chemistry 51/1 (January 2023), 57-70. https://doi.org/10.15671/hjbc.1065317.
JAMA Uğur Y, Şalva E, Karaat F, Erdoğan S. Antiproliferative properties and evaluation of antioxidant of different cornelian cherry genotypes and analysis of phenolic and sugar compounds by HPLC. HJBC. 2023;51:57–70.
MLA Uğur, Yılmaz et al. “Antiproliferative Properties and Evaluation of Antioxidant of Different Cornelian Cherry Genotypes and Analysis of Phenolic and Sugar Compounds by HPLC”. Hacettepe Journal of Biology and Chemistry, vol. 51, no. 1, 2023, pp. 57-70, doi:10.15671/hjbc.1065317.
Vancouver Uğur Y, Şalva E, Karaat F, Erdoğan S. Antiproliferative properties and evaluation of antioxidant of different cornelian cherry genotypes and analysis of phenolic and sugar compounds by HPLC. HJBC. 2023;51(1):57-70.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc