Review
BibTex RIS Cite

Programmable living nanorobots

Year 2023, Volume: 51 Issue: 2, 183 - 190, 01.04.2023
https://doi.org/10.15671/hjbc.1208034

Abstract

There are many different nanorobots in the literature, but the nanorobots that we will talk about in this review is a unique robot and the first of its kind because it is made entirely from the heart and skin cells of a frog, which means only living cells without any artificial materials. This type of robot has been programmed and studied using the silico system, in which the heart and skin cells will be arranged before being applied in vivo have been designed. On the other hand, this robot has many negatives, like anything in our world has disadvantages and advantages, so we will mention them and discuss them in this review by mentioning the aspirations and future directions of this unique robot.

References

  • S. Kriegman, D. Blackiston, M. Levin, J. Bongard, A scalable pipeline for designing reconfigurable organisms, Proc. Natl. Acad. Sci. U.S.A., 117.4 (2020) 1853-1859.
  • J. E. Brown, Living robots built using frog cells, Science Daily, (2020).
  • M. Levin, J. Bongard, J. E. Lunshof, Applications and ethics of computer-designed organisms, Nat. Rev. Mol. Cell. Biol., 21.11 (2020) 655-656.
  • L. N. Vandenberg, D. S. Adams, M. Levin, Normalized shape and location of perturbed craniofacial structures in the Xenopus tadpole reveal an innate ability to achieve correct morphology, Dev. Dyn., 241.5 (2012) 863-878.
  • C. A. Hutchison III, et al, Design and synthesis of a minimal bacterial genome, Science, 351.6280 (2016) aad6253 1-13.
  • E. Botkin-Kowacki, Behold the xenobots–part frog, part robot. But are they alive, CSM, (2020).
  • P. Ball, Living robots, Nat. Mater., 19.3 (2020) 265-265.
  • S. Coghlan, K. Leins, “Living Robots”: Ethical Questions About Xenobots, Am. J. Bioeth., 20.5 (2020) W1-W3.
  • D. Blackiston, et al, A cellular platform for the development of synthetic living machines, Sci. Robot., 6.52 (2021) eabf1571 1-14.
  • N. Cheney, et al, Scalable co-optimization of morphology and control in embodied machines, J. R. Soc. Interface, 15.143 (2018) 20170937 1-10.
  • D. Cellucci, et al, 1D Printing of Recyclable Robots, IEEE Robot. Autom. Lett., 2.4 (2017) 1964-1971.
  • H. Lipson, J. B. Pollack, Automatic design and manufacture of robotic lifeforms, Nature, 406.6799 (2000) 974-978.
  • N. Jakobi, Evolutionary robotics and the radical envelope-ofnoise hypothesis, Adapt. Behav., 6.2 (1997) 325-368.
  • G. A. Deblandre, et al, A two-step mechanism generates the spacing pattern of the ciliated cells in the skin of Xenopus embryos, Development, 126.21 (1999) 4715-4728.
  • A. Jain, Multi-talented Microbots, (2021) 1-7.
  • J. Werfel, K. Petersen, R. Nagpal, Designing collective behavior in a termite-inspired robot construction team, Science, 343.6172 (2014) 754-758.
  • F. Baluška, M. Levin, On having no head: cognition throughout biological systems, Front. Psychol., (2016) 1-19.
  • D. Patra, et al, Intelligent, self-powered, drug delivery systems, Nanoscale, 5.4 (2013) 1273-1283.
  • J. Li, et al, Micro/nanorobots for biomedicine: Delivery, surgery, sensing, and detoxification, Sci. Robot., (2017) 1-10.
  • M. Z. Miskin, Electronically integrated, mass-manufactured, microscopic robots, Nature, 584.7822 (2020) 557-561.
  • K. Arends, et al, Green fluorescent protein-labeled monitoring tool to quantify conjugative plasmid transfer between Gram-positive and Gram-negative bacteria, Appl. Environ. Microbiol., 78.3 (2012) 895-899.
  • D. DeGrazia, Taking animals seriously: Mental life and moral status, Cambridge Univ. Press, (1996) 1-314.
  • P. W. Taylor, Respect for Nature: A Theory of Environmental Ethics, Princeton University Press, 2011 1-360.
  • P. Dabrock, Playing God? Synthetic biology as a theological and ethical challenge, Syst. Synth. Biol., 3.1 (2009) 47-54.
  • J. Boldt, O. Müller, Newtons of the leaves of grass, Nat. Biotechnol., 26.4 (2008) 387-389.
  • T. Douglas, R. Powell, J. Savulescu, Is the creation of artificial life morally significant?, Stud. Hist. Philos. Biol. Biomed. Sci., 44.4 (2013) 688-696.
Year 2023, Volume: 51 Issue: 2, 183 - 190, 01.04.2023
https://doi.org/10.15671/hjbc.1208034

Abstract

References

  • S. Kriegman, D. Blackiston, M. Levin, J. Bongard, A scalable pipeline for designing reconfigurable organisms, Proc. Natl. Acad. Sci. U.S.A., 117.4 (2020) 1853-1859.
  • J. E. Brown, Living robots built using frog cells, Science Daily, (2020).
  • M. Levin, J. Bongard, J. E. Lunshof, Applications and ethics of computer-designed organisms, Nat. Rev. Mol. Cell. Biol., 21.11 (2020) 655-656.
  • L. N. Vandenberg, D. S. Adams, M. Levin, Normalized shape and location of perturbed craniofacial structures in the Xenopus tadpole reveal an innate ability to achieve correct morphology, Dev. Dyn., 241.5 (2012) 863-878.
  • C. A. Hutchison III, et al, Design and synthesis of a minimal bacterial genome, Science, 351.6280 (2016) aad6253 1-13.
  • E. Botkin-Kowacki, Behold the xenobots–part frog, part robot. But are they alive, CSM, (2020).
  • P. Ball, Living robots, Nat. Mater., 19.3 (2020) 265-265.
  • S. Coghlan, K. Leins, “Living Robots”: Ethical Questions About Xenobots, Am. J. Bioeth., 20.5 (2020) W1-W3.
  • D. Blackiston, et al, A cellular platform for the development of synthetic living machines, Sci. Robot., 6.52 (2021) eabf1571 1-14.
  • N. Cheney, et al, Scalable co-optimization of morphology and control in embodied machines, J. R. Soc. Interface, 15.143 (2018) 20170937 1-10.
  • D. Cellucci, et al, 1D Printing of Recyclable Robots, IEEE Robot. Autom. Lett., 2.4 (2017) 1964-1971.
  • H. Lipson, J. B. Pollack, Automatic design and manufacture of robotic lifeforms, Nature, 406.6799 (2000) 974-978.
  • N. Jakobi, Evolutionary robotics and the radical envelope-ofnoise hypothesis, Adapt. Behav., 6.2 (1997) 325-368.
  • G. A. Deblandre, et al, A two-step mechanism generates the spacing pattern of the ciliated cells in the skin of Xenopus embryos, Development, 126.21 (1999) 4715-4728.
  • A. Jain, Multi-talented Microbots, (2021) 1-7.
  • J. Werfel, K. Petersen, R. Nagpal, Designing collective behavior in a termite-inspired robot construction team, Science, 343.6172 (2014) 754-758.
  • F. Baluška, M. Levin, On having no head: cognition throughout biological systems, Front. Psychol., (2016) 1-19.
  • D. Patra, et al, Intelligent, self-powered, drug delivery systems, Nanoscale, 5.4 (2013) 1273-1283.
  • J. Li, et al, Micro/nanorobots for biomedicine: Delivery, surgery, sensing, and detoxification, Sci. Robot., (2017) 1-10.
  • M. Z. Miskin, Electronically integrated, mass-manufactured, microscopic robots, Nature, 584.7822 (2020) 557-561.
  • K. Arends, et al, Green fluorescent protein-labeled monitoring tool to quantify conjugative plasmid transfer between Gram-positive and Gram-negative bacteria, Appl. Environ. Microbiol., 78.3 (2012) 895-899.
  • D. DeGrazia, Taking animals seriously: Mental life and moral status, Cambridge Univ. Press, (1996) 1-314.
  • P. W. Taylor, Respect for Nature: A Theory of Environmental Ethics, Princeton University Press, 2011 1-360.
  • P. Dabrock, Playing God? Synthetic biology as a theological and ethical challenge, Syst. Synth. Biol., 3.1 (2009) 47-54.
  • J. Boldt, O. Müller, Newtons of the leaves of grass, Nat. Biotechnol., 26.4 (2008) 387-389.
  • T. Douglas, R. Powell, J. Savulescu, Is the creation of artificial life morally significant?, Stud. Hist. Philos. Biol. Biomed. Sci., 44.4 (2013) 688-696.
There are 26 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Ammar Zidan This is me 0000-0003-2982-3740

Süleyman Aşır 0000-0002-6672-6862

Publication Date April 1, 2023
Acceptance Date January 11, 2023
Published in Issue Year 2023 Volume: 51 Issue: 2

Cite

APA Zidan, A., & Aşır, S. (2023). Programmable living nanorobots. Hacettepe Journal of Biology and Chemistry, 51(2), 183-190. https://doi.org/10.15671/hjbc.1208034
AMA Zidan A, Aşır S. Programmable living nanorobots. HJBC. April 2023;51(2):183-190. doi:10.15671/hjbc.1208034
Chicago Zidan, Ammar, and Süleyman Aşır. “Programmable Living Nanorobots”. Hacettepe Journal of Biology and Chemistry 51, no. 2 (April 2023): 183-90. https://doi.org/10.15671/hjbc.1208034.
EndNote Zidan A, Aşır S (April 1, 2023) Programmable living nanorobots. Hacettepe Journal of Biology and Chemistry 51 2 183–190.
IEEE A. Zidan and S. Aşır, “Programmable living nanorobots”, HJBC, vol. 51, no. 2, pp. 183–190, 2023, doi: 10.15671/hjbc.1208034.
ISNAD Zidan, Ammar - Aşır, Süleyman. “Programmable Living Nanorobots”. Hacettepe Journal of Biology and Chemistry 51/2 (April 2023), 183-190. https://doi.org/10.15671/hjbc.1208034.
JAMA Zidan A, Aşır S. Programmable living nanorobots. HJBC. 2023;51:183–190.
MLA Zidan, Ammar and Süleyman Aşır. “Programmable Living Nanorobots”. Hacettepe Journal of Biology and Chemistry, vol. 51, no. 2, 2023, pp. 183-90, doi:10.15671/hjbc.1208034.
Vancouver Zidan A, Aşır S. Programmable living nanorobots. HJBC. 2023;51(2):183-90.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc