Numerical Analysis of Explosion-Induced Deformations on Steel Panels in Urban Environments
Year 2024,
Volume: 52 Issue: 5, 267 - 281, 12.12.2024
Murat Şahin
,
Sedat Tulumcu
Abstract
Explosion proof structures are designed to be very heavy and non-functional using conventional systems so that they can be resistant to blast effects. As a result, not only the emergence of non-economic structures, but also their operational performance decreases. To effectively mitigate these challenges, a substantial body of research has focused on the development and application of designs and materials specifically engineered to withstand explosive load impacts. In this study, the strength of steel plates under explosives with different energies was tested. Related tests were performed using Ls-Dyna finite element software. An experimental literature was used to calibrate the numerical model. When the results obtained as a result of the calibration were compared with the experimental data, a high level of agreement was obtained. The calibrated numerical model was subjected to burst loads by varying the panel thicknesses and its dynamic responses were simulated. The displacement values were analyzed by placing the explosives equidistant from the panel centers. By comparing the analysis results, explosive energies were compared. The most effective explosive types could be listed according to the amount of change that the evaluated explosives in the same amount caused on the panel surfaces. In line with these studies, information will be gained about what type of steel materials will be used against which type of explosives in areas that need to be protected in urban areas.
Ethical Statement
Hacettepe Journal of Biology and Chemistry dergisi kurallarına uygun olarak hazırladığım bu makale çalışmasında; makale içinde sunduğum
verileri, bilgileri ve dokümanları akademik ve etik kurallar çerçevesinde elde ettiğimi, tüm bilgi, belge, değerlendirme ve sonuçları bilimsel etik ve ahlak kurallarına uygun olarak sunduğumu, makale çalışmasında yararlandığım eserlerin tümüne uygun atıfta bulunarak kaynak gösterdiğimi, kullanılan verilerde herhangi bir değişiklik yapmadığımı, bu tezde sunduğum çalışmanın özgün olduğunu, bildirir; aksi bir durumda aleyhime doğabilecek tüm hak kayıplarını kabullendiğimi beyan ederim.
References
- M.G. Rashed, M. Ashraf , R.A.W. Mines, Metallic microlattice materials: a current state of the art on manufacturing, Mechanical properties and applications, 33, (2016), 95-518 .
- A. Vaziri, W. J. Hutchinson, Metal sandwich plates subject to intense air shocks, International Journal of Solids and Structures, 44, (2007), 2021-2035.
- Z. Jianxun, Z. Renfang, W. Mingshi, Q. Qinghua, Y. Yang, T.J. Wang, Dynamic response of double-layer rectangular sandwich plates with metal foam cores subjected to blast loading, International Journal of Impact Engineering, 122, (2018), 265-275.
- C. Ganchao, C. Yuansheng, Z. Pan, C. Sipei, L. Jun, Blast resistance of metallic double arrowhead honeycomb sandwich panels with different core configurations under the paper tube-guided air blast loading, International Journal of Mechanical Sciences, 201, (2021), 106-457.
- W. Yinghan, L. Qiang, F. Jie, L. Qing, H. David, Dynamic crash responses of bio-inspired aluminum honeycomb sandwich structures with CFRP panels, Composites Part B: Engineering, 121, (2017), 122-133.
- T. Thippeswamy, P. Shirbhate, J. Mandal, S. Inderpal, Manmohan, Numerical investigation on the blast resistance of a door panel, Materials Today, 2020.
- M. Damith, P. Fernando, W. Dakshitha, A. Remennikov, Evaluation of effectiveness of polymer coatings in reducing blast-induced deformation of steel plates, 17, (2021), 1895-1904.
- W. Chengqing, H. Hong, Modeling of simultaneous ground shock and airblast pressure on nearby structures from surface explosions, International Journal of Impact Engineering., 31, (2005), 699–717.
- LSTC, LS-DYNA Version 971 Keyword User's Manual_Rev5-beta, Livermore Software Technology Corporation, 2010.
- J.W. Hutchinson, Z.Xue, Metal Sandwich Plates Optimized For Pressure Impulses, Int. J. Mech. Sci., 47, (2005), 545–69.
- NA. Fleck, VS. Deshpande, The Resistance Of Clamped Sandwich Beams To Shock Loading, J Appl Mech., 71, (2004), 386–401.
- Baker W. E., Explosions in Air, University of Texas Press, Austin, 1973.
- S. Chung, GN. Nurick, Experimental and numerical studies on the response of quadrangular stiffened plates. Part I: Subjected to uniform blast load., Int. J. Impact Eng. 31(1), (2005), 55–83.
- Hibbit, Karlsson and Sorenson Inc., ABAQUS/Explicit user’s manual, Version 6.0, Pennsylvania, USA, 2001.
- M.S. Chafi, G. Karami, M. Ziejewski, Numerical analysis of blast-induced wave propagation using FSI and ALE multi-material formulations, International Journal of Impact Engineering, 36(10-11), (2009), 1269-1275.
- P. Kumar, N.G. Haydn, X. Wadleya, W. John Hutchinson, Mechanical response of metallic honeycomb sandwich panel structures to high-intensity dynamic loading, International Journal of Impact Engineering, 35, (2008), 1063–1074.
- X. Zhenyu, J.W. Hutchinson, Preliminary assessment of sandwich plates subject to blast loads, International Journal of Mechanical Sciences, 45, (2003), 687-705.
- N. Nemat, Thermomechanical response of AL-6XN stainless steel over a wide range of strain rates and temperatures, Journal of The Mechanics and Physics of Solids, 49, (2001), 1823-1846.
- Hallquist J.O., LS-DYNA Users Manual.” Livermore Software Technology Corporation, LSTC, Livermore, California, 1998.
KENTSEL ORTAMLARDA ÇELİK PANELLERDE PATLAMADAN KAYNAKLANAN DEFORMASYONLARIN SAYISAL ANALİZİ
Year 2024,
Volume: 52 Issue: 5, 267 - 281, 12.12.2024
Murat Şahin
,
Sedat Tulumcu
Abstract
Patlamaya dayanıklı yapılar, patlama etkilerine karşı dayanıklı olabilmeleri için geleneksel sistemler kullanılarak çok ağır ve işlevsiz olacak şekilde tasarlanır. Sonuç olarak, sadece ekonomik olmayan yapıların ortaya çıkması değil, aynı zamanda operasyonel performansları da azalır. Bu zorlukları etkili bir şekilde azaltmak için, önemli miktarda araştırma, patlayıcı yük etkilerine dayanacak şekilde özel olarak tasarlanmış tasarımların ve malzemelerin geliştirilmesine ve uygulanmasına odaklanmıştır. Bu çalışmada, farklı enerjilere sahip patlayıcılar altında çelik plakaların mukavemeti test edilmiştir. İlgili testler Ls-Dyna sonlu elemanlar yazılımı kullanılarak gerçekleştirilmiştir. Sayısal modeli kalibre etmek için deneysel bir literatür kullanılmıştır. Kalibrasyon sonucunda elde edilen sonuçlar deneysel verilerle karşılaştırıldığında yüksek düzeyde bir uyum elde edilmiştir. Kalibre edilmiş sayısal model, panel kalınlıkları değiştirilerek patlama yüklerine tabi tutulmuş ve dinamik tepkileri simüle edilmiştir. Yer değiştirme değerleri, patlayıcılar panel merkezlerinden eşit uzaklıkta yerleştirilerek analiz edilmiştir. Analiz sonuçları karşılaştırılarak patlayıcı enerjileri karşılaştırılmıştır. Aynı miktarda değerlendirilen patlayıcıların panel yüzeylerinde meydana getirdiği değişim miktarına göre en etkili patlayıcı tipleri sıralanabilir. Bu çalışmalar doğrultusunda kentsel alanlarda korunması gereken alanlarda hangi tip patlayıcılara karşı hangi tip çelik malzemenin kullanılacağı hakkında bilgi edinilecektir.
References
- M.G. Rashed, M. Ashraf , R.A.W. Mines, Metallic microlattice materials: a current state of the art on manufacturing, Mechanical properties and applications, 33, (2016), 95-518 .
- A. Vaziri, W. J. Hutchinson, Metal sandwich plates subject to intense air shocks, International Journal of Solids and Structures, 44, (2007), 2021-2035.
- Z. Jianxun, Z. Renfang, W. Mingshi, Q. Qinghua, Y. Yang, T.J. Wang, Dynamic response of double-layer rectangular sandwich plates with metal foam cores subjected to blast loading, International Journal of Impact Engineering, 122, (2018), 265-275.
- C. Ganchao, C. Yuansheng, Z. Pan, C. Sipei, L. Jun, Blast resistance of metallic double arrowhead honeycomb sandwich panels with different core configurations under the paper tube-guided air blast loading, International Journal of Mechanical Sciences, 201, (2021), 106-457.
- W. Yinghan, L. Qiang, F. Jie, L. Qing, H. David, Dynamic crash responses of bio-inspired aluminum honeycomb sandwich structures with CFRP panels, Composites Part B: Engineering, 121, (2017), 122-133.
- T. Thippeswamy, P. Shirbhate, J. Mandal, S. Inderpal, Manmohan, Numerical investigation on the blast resistance of a door panel, Materials Today, 2020.
- M. Damith, P. Fernando, W. Dakshitha, A. Remennikov, Evaluation of effectiveness of polymer coatings in reducing blast-induced deformation of steel plates, 17, (2021), 1895-1904.
- W. Chengqing, H. Hong, Modeling of simultaneous ground shock and airblast pressure on nearby structures from surface explosions, International Journal of Impact Engineering., 31, (2005), 699–717.
- LSTC, LS-DYNA Version 971 Keyword User's Manual_Rev5-beta, Livermore Software Technology Corporation, 2010.
- J.W. Hutchinson, Z.Xue, Metal Sandwich Plates Optimized For Pressure Impulses, Int. J. Mech. Sci., 47, (2005), 545–69.
- NA. Fleck, VS. Deshpande, The Resistance Of Clamped Sandwich Beams To Shock Loading, J Appl Mech., 71, (2004), 386–401.
- Baker W. E., Explosions in Air, University of Texas Press, Austin, 1973.
- S. Chung, GN. Nurick, Experimental and numerical studies on the response of quadrangular stiffened plates. Part I: Subjected to uniform blast load., Int. J. Impact Eng. 31(1), (2005), 55–83.
- Hibbit, Karlsson and Sorenson Inc., ABAQUS/Explicit user’s manual, Version 6.0, Pennsylvania, USA, 2001.
- M.S. Chafi, G. Karami, M. Ziejewski, Numerical analysis of blast-induced wave propagation using FSI and ALE multi-material formulations, International Journal of Impact Engineering, 36(10-11), (2009), 1269-1275.
- P. Kumar, N.G. Haydn, X. Wadleya, W. John Hutchinson, Mechanical response of metallic honeycomb sandwich panel structures to high-intensity dynamic loading, International Journal of Impact Engineering, 35, (2008), 1063–1074.
- X. Zhenyu, J.W. Hutchinson, Preliminary assessment of sandwich plates subject to blast loads, International Journal of Mechanical Sciences, 45, (2003), 687-705.
- N. Nemat, Thermomechanical response of AL-6XN stainless steel over a wide range of strain rates and temperatures, Journal of The Mechanics and Physics of Solids, 49, (2001), 1823-1846.
- Hallquist J.O., LS-DYNA Users Manual.” Livermore Software Technology Corporation, LSTC, Livermore, California, 1998.