Research Article
BibTex RIS Cite
Year 2024, Volume: 52 Issue: 4, 273 - 283, 11.10.2024
https://doi.org/10.15671/hjbc.1464084

Abstract

References

  • G. Mancuso, A. Midiri, E. Gerace, C. Biondo, Bacterial antibiotic resistance: the most critical pathogens, Pathogens, 10 (2021) 1–14.
  • D. Gaspar, A. Salomé Veiga, M.A.R.B. Castanho, From antimicrobial to anticancer peptides. A review, Front. Microbiol., 4 (2013) 1–16.
  • I.E. Mba, E. Innocent Nweze, Antimicrobial peptides therapy: An emerging alternative for treating drug-resistant bacteria, Yale J. Biol. Med., 95 (2022) 445–463.
  • U. Kandekar, R. Pujari, P. Chaudhari, K. Khandelwal, K. Lone, T. Chorge, Nanocarriers for breast cancer: Advanced perspective, Hacettepe Univ. J. Fac. Pharm., 41 (2021) 177–193.
  • R. Oliyai, Prodrugs of peptides and peptidomimetics for improved formulation and delivery, Adv. Drug Deliv. Rev., 19 (1996) 275–286.
  • G. Gillissen, M. Schumacher, M. Breuer-Werle, Modulation of antimicrobial effects of beta-lactams by amino acids in vitro, Zentralblatt Fur Bakteriol., 275 (1991) 223–232.
  • W. Hammes, K.H. Schleifer, O. Kandler, Mode of action of glycine on the biosynthesis of peptidoglycan, J. Bacteriol., 116 (1973) 1029–1053.
  • J.L. Strominger, C.H. Birge, Nucleotide accumulation induced in Staphylococcus aureus by glycine, J. Bacteriol., 89 (1965) 1124–1127.
  • F. Hishinuma, K. Izaki, H. Takahashi, Effects of glycine and d-amino acids on growth of various microorganisms, Agric. Biol. Chem., 33 (1969) 1577–1586.
  • G.M. Dunny, L.N. Lee, D.J. Leblancet, Improved electroporation and cloning vector system for Gram-positive bacteria, Appl. Environ. Microbiol., 57 (1991) 1194–1201.
  • 1J. Mwangi, X. Hao, R. Lai, Z.Y. Zhang, Antimicrobial peptides: A new hope in the war against multidrug resistance, Zool. Res., 40 (2019) 488–505.
  • Z. Nikfar, Z. Shariatinia, Tripeptide arginyl-glycyl-aspartic acid (RGD) for delivery of Cyclophosphamide anticancer drug: A computational approach, Int. J. Nano Dimens., 11 (2020) 312–336.
  • S.I. Attah, U.C. Okoro, S.P. Singh, C.C. Eze, C.U. Ibeji, J.A. Ezugwu, O.U. Okenyeka, O. Ekoh, D.I. Ugwu, F.U. Eze, Pro-Gly based dipeptide containing sulphonamide functionality, their antidiabetic, antioxidant, and anti-inflammatory activities. Synthesis, characterization and computational studies, J. Mol. Struct., 1264 (2022) 133280.
  • J.A. Ezugwu, U.C. Okoro, M.A. Ezeokonkwo, C. Bhimapaka, S.N. Okafor, D.I. Ugwu, D.I. Ugwuja, Synthesis and biological evaluation of Val–Val dipeptide–sulfonamide conjugates, Arch. Pharm. (Weinheim)., 353 (2020) 1–11.
  • J.A. Ezugwu, U.C. Okoro, M.A. Ezeokonkwo, C.R. Bhimapaka, S.N. Okafor, D.I. Ugwu, O.C. Ekoh, S.I. Attah, Novel Leu-Val based dipeptide as antimicrobial and antimalarial agents: Synthesis and molecular docking, Front. Chem., 8 (2020) 1–13.
  • G. Sahal, I.S. Bilkay, Multi drug resistance in strong biofilm forming clinical isolates of Staphylococcus epidermidis, Brazilian J. Microbiol., 45 (2014) 539–544.
  • G. Sahal, I.S. Bilkay, Distribution of clinical isolates of Candida spp. and antifungal susceptibility of high biofilm-forming Candida isolates., Rev. Soc. Bras. Med. Trop., 51 (2018) 644–650.
  • G. Sahal, I.S. Bilkay, Multidrug resistance by biofilm-forming clinical strains of Proteus mirabilis, Asian Biomed., 9 (2015) 535-541.
  • G. Sahal, H.J. Woerdenbag, W.L.J. Hinrichs, A. Visser, P.G. Tepper, W.J. Quax, H.C. van der Mei, I.S. Bilkay, Antifungal and biofilm inhibitory effect of Cymbopogon citratus (lemongrass) essential oil on biofilm forming by Candida tropicalis isolates; an in vitro study, J. Ethnopharmacol., 246 (2020) 112188.
  • C. Akay, M. Tanıs, H. Sevim, Effect of artificial saliva with different ph levels on the cytotoxicity of soft denture lining materials, Int. J. Artif. Organs., 40 (2017) 581–588.
  • H.K. Can, H. Sevim, O. Sahin, O.A. Gurpinar, Experimental routes of cytotoxicity studies of nanocomposites based on the organo-bentonite clay and anhydride containing co- and terpolymers, Polym. Bull., 79 (2022) 5549–5567.
  • Sevim Akan, G. Sahal, T.D. Karaca, O.A. Gurpinar, M. Maras, A. Dogan, Evaluation of glycyl-arginine and lysyl-aspartic acid dipeptides for their antimicrobial, antibiofilm, and anticancer potentials, Arch. Microbiol., 205 (2023) 1–11.
  • S. Kapil, V. Sharma, D-amino acids in antimicrobial peptides: A potential approach to treat and combat antimicrobial resistance, Can. J. Microbiol., 67 (2021) 119–137.
  • Y. Huan, Q. Kong, H. Mou, H. Yi, Antimicrobial peptides: Classification, design, application and research progress in multiple fields, Front. Microbiol., 11 (2020) 1–21.
  • G. Kuzderová, M. Rendošová, R. Gyepes, S. Sovová, D. Sabolová, M. Vilková, P. Olejníková, I. Bačová, S. Stokič, M. Kello, Z. Vargová, Antimicrobial and anticancer application of silver(I) dipeptide complexes, Molecules., 26 (2021) 1–27.
  • M.G. Nowak, A.S. Skwarecki, M.J. Milewska, Amino acid based antimicrobial agents – synthesis and properties, ChemMedChem., 16 (2021) 3513–3544.
  • M. Minami, T. Ando, S.N. Hashikawa, K. Torii, T. Hasegawa, D.A. Israel, K. Ina, K. Kusugami, H. Goto, M. Ohta, Effect of glycine on Helicobacter pylori in vitro, Antimicrob. Agents Chemother., 48 (2004) 3782–3788.
  • Z. Yan, Y. Kang, X. Wen, C. Xu, W. Chu, Effect of amino acids and glycyl dipeptides on micellization of antibacterial drug domiphen bromide, J. Surfactants Deterg., 20 (2017) 391–400.
  • A. Moretta, C. Scieuzo, A.M. Petrone, R. Salvia, M.D. Manniello, A. Franco, D. Lucchetti, A. Vassallo, H. Vogel, A. Sgambato, P. Falabella, Antimicrobial peptides: A new hope in biomedical and pharmaceutical fields, Front. Cell. Infect. Microbiol., 11 (2021) 1–26.
  • I. Soares, I. Rodrigues, P.M. da Costa, L.Gales, Antibacterial and antibiofilm properties of self-assembled dipeptide nanotubes, Int. J. Mol. Sci., 24 (2022) 328.
  • H. Barreteau, A. Kovac, A. Boniface, M. Sova, S. Gobec, D. Blanot, Cytoplasmic steps of peptidoglycan biosynthesis, FEMS Microbiol. Rev., 32(2) (2008) 168-207.
  • M. Idrees, A.R. Mohammad, N. Karodia, A. Rahman, Multimodal role of amino acids in microbial control and drug development, 9(6) (2020) 330.
  • D. Shcharbin, V. Zhogla, P. Kirsanov, I. Halets-bui, M. Bryszewska, M. Odabas, B. Onal, Dipeptide nanostructures: Synthesis, interactions, advantages and biomedical applications, Colloids Surf. B. Biointerfaces, 222 (2023) 113031.
  • A. Andrea, N. Molchanova, H. Jenssen, Antibiofilm peptides and peptidomimetics with focus on surface immobilization, Biomolecules, 8 (2018) 27.
  • M. Ghasemi, T. Turnbull, S. Sebastian, I. Kempson, The mtt assay: Utility, limitations, pitfalls, and interpretation in bulk and single-cell analysis, Int. J. Mol. Sci., 22 (2021) 12827.
  • G. Cakmak, C. Akay, M.B. Donmez, E. Mumcu, H.S. Akan, R. Sasany, S. Abou-Ayash, B. Yilmaz, Effect of potassium aluminum sulfate application on the viability of fibroblasts on a CAD-CAM feldspathic ceramic before and after thermocycling, Materials (Basel), 15 (2022) 1–8.
  • Z. Bedlovičová, Green synthesis of silver nanoparticles using actinomycetes, Green Synth. Silver Nanomater., 50 (2022) 547–569.
  • E. Kubat, M.A. Onur, O.A. Gurpinar, Cytotoxic Activity of Apixaban on HeLa Cells: An In vitro Study, Hacettepe J. Biol. Chem., 3 (2018) 395–402.
  • Y.Y. Qi, Q. Gan, Y.X. Liu, Y.H. Xiong, Z.W. Mao, X.Y. Le, Two new Cu(II) dipeptide complexes based on 5-methyl-2-(2′-pyridyl)benzimidazole as potential antimicrobial and anticancer drugs: Special exploration of their possible anticancer mechanism, Eur. J. Med. Chem., 154 (2018) 220–232.
  • J. Bojarska, A. Mieczkowski, Z. Ziora, M. Skwarczynski, I. Toth, A.O. Shalash, K. Parang, S.A. El-Mowafi, E.H.M. Mohammed, S. Elnagdy, M. Alkhazindar, W.M. Wolf, Cyclic dipeptides: The biological and structural landscape with special focus on the anti-cancer proline-based scaffold, Biomolecules, 11 (2021) 1515.

Antimicrobial, Antibiofilm and Anticancer Potentials of Glycine and Glycyl-Glycine; an in vitro study

Year 2024, Volume: 52 Issue: 4, 273 - 283, 11.10.2024
https://doi.org/10.15671/hjbc.1464084

Abstract

Globally, there is a huge demand for novel agents capable of providing protection against both pathogen microorganisms and tumor cells. In this study, the antimicrobial, biofilm inhibitory, and anticancer effects of glycine and glycyl-glycine were investigated. The antimicrobial effects were determined using the broth dilution method, while the biofilm inhibitory effects were assessed through the crystal violet binding assay. Cytotoxic effects on HeLa cell viability were measured using the MTT assay. Our results indicate that, although 100 mg/mL of glycine only inhibited S. epidermidis W17 among the three tested isolates, 400 mg/mL of glycyl-glycine inhibited both S. epidermidis W17 and P. mirabilis U15 strains. Additionally, sub-MICs (concentrations below the Minimum Inhibition Concentration) of glycine inhibited biofilm formation by more than 70% in all tested clinical isolates and exhibited significantly more biofilm inhibition against P. mirabilis U15 and S. epidermidis W17 strains (p<0.05). A549 and HeLa cell types exhibited a significant reduction in cell viability at concentrations of 0.3 mM and 1 mM compared to the control after treatment with glycine and glycyl-glycine (p<0.001). The results obtained in this study will enhance the development of new strategies using amino acids and dipeptide-based synthesizable molecules, contributing to advancements in drug development research.

References

  • G. Mancuso, A. Midiri, E. Gerace, C. Biondo, Bacterial antibiotic resistance: the most critical pathogens, Pathogens, 10 (2021) 1–14.
  • D. Gaspar, A. Salomé Veiga, M.A.R.B. Castanho, From antimicrobial to anticancer peptides. A review, Front. Microbiol., 4 (2013) 1–16.
  • I.E. Mba, E. Innocent Nweze, Antimicrobial peptides therapy: An emerging alternative for treating drug-resistant bacteria, Yale J. Biol. Med., 95 (2022) 445–463.
  • U. Kandekar, R. Pujari, P. Chaudhari, K. Khandelwal, K. Lone, T. Chorge, Nanocarriers for breast cancer: Advanced perspective, Hacettepe Univ. J. Fac. Pharm., 41 (2021) 177–193.
  • R. Oliyai, Prodrugs of peptides and peptidomimetics for improved formulation and delivery, Adv. Drug Deliv. Rev., 19 (1996) 275–286.
  • G. Gillissen, M. Schumacher, M. Breuer-Werle, Modulation of antimicrobial effects of beta-lactams by amino acids in vitro, Zentralblatt Fur Bakteriol., 275 (1991) 223–232.
  • W. Hammes, K.H. Schleifer, O. Kandler, Mode of action of glycine on the biosynthesis of peptidoglycan, J. Bacteriol., 116 (1973) 1029–1053.
  • J.L. Strominger, C.H. Birge, Nucleotide accumulation induced in Staphylococcus aureus by glycine, J. Bacteriol., 89 (1965) 1124–1127.
  • F. Hishinuma, K. Izaki, H. Takahashi, Effects of glycine and d-amino acids on growth of various microorganisms, Agric. Biol. Chem., 33 (1969) 1577–1586.
  • G.M. Dunny, L.N. Lee, D.J. Leblancet, Improved electroporation and cloning vector system for Gram-positive bacteria, Appl. Environ. Microbiol., 57 (1991) 1194–1201.
  • 1J. Mwangi, X. Hao, R. Lai, Z.Y. Zhang, Antimicrobial peptides: A new hope in the war against multidrug resistance, Zool. Res., 40 (2019) 488–505.
  • Z. Nikfar, Z. Shariatinia, Tripeptide arginyl-glycyl-aspartic acid (RGD) for delivery of Cyclophosphamide anticancer drug: A computational approach, Int. J. Nano Dimens., 11 (2020) 312–336.
  • S.I. Attah, U.C. Okoro, S.P. Singh, C.C. Eze, C.U. Ibeji, J.A. Ezugwu, O.U. Okenyeka, O. Ekoh, D.I. Ugwu, F.U. Eze, Pro-Gly based dipeptide containing sulphonamide functionality, their antidiabetic, antioxidant, and anti-inflammatory activities. Synthesis, characterization and computational studies, J. Mol. Struct., 1264 (2022) 133280.
  • J.A. Ezugwu, U.C. Okoro, M.A. Ezeokonkwo, C. Bhimapaka, S.N. Okafor, D.I. Ugwu, D.I. Ugwuja, Synthesis and biological evaluation of Val–Val dipeptide–sulfonamide conjugates, Arch. Pharm. (Weinheim)., 353 (2020) 1–11.
  • J.A. Ezugwu, U.C. Okoro, M.A. Ezeokonkwo, C.R. Bhimapaka, S.N. Okafor, D.I. Ugwu, O.C. Ekoh, S.I. Attah, Novel Leu-Val based dipeptide as antimicrobial and antimalarial agents: Synthesis and molecular docking, Front. Chem., 8 (2020) 1–13.
  • G. Sahal, I.S. Bilkay, Multi drug resistance in strong biofilm forming clinical isolates of Staphylococcus epidermidis, Brazilian J. Microbiol., 45 (2014) 539–544.
  • G. Sahal, I.S. Bilkay, Distribution of clinical isolates of Candida spp. and antifungal susceptibility of high biofilm-forming Candida isolates., Rev. Soc. Bras. Med. Trop., 51 (2018) 644–650.
  • G. Sahal, I.S. Bilkay, Multidrug resistance by biofilm-forming clinical strains of Proteus mirabilis, Asian Biomed., 9 (2015) 535-541.
  • G. Sahal, H.J. Woerdenbag, W.L.J. Hinrichs, A. Visser, P.G. Tepper, W.J. Quax, H.C. van der Mei, I.S. Bilkay, Antifungal and biofilm inhibitory effect of Cymbopogon citratus (lemongrass) essential oil on biofilm forming by Candida tropicalis isolates; an in vitro study, J. Ethnopharmacol., 246 (2020) 112188.
  • C. Akay, M. Tanıs, H. Sevim, Effect of artificial saliva with different ph levels on the cytotoxicity of soft denture lining materials, Int. J. Artif. Organs., 40 (2017) 581–588.
  • H.K. Can, H. Sevim, O. Sahin, O.A. Gurpinar, Experimental routes of cytotoxicity studies of nanocomposites based on the organo-bentonite clay and anhydride containing co- and terpolymers, Polym. Bull., 79 (2022) 5549–5567.
  • Sevim Akan, G. Sahal, T.D. Karaca, O.A. Gurpinar, M. Maras, A. Dogan, Evaluation of glycyl-arginine and lysyl-aspartic acid dipeptides for their antimicrobial, antibiofilm, and anticancer potentials, Arch. Microbiol., 205 (2023) 1–11.
  • S. Kapil, V. Sharma, D-amino acids in antimicrobial peptides: A potential approach to treat and combat antimicrobial resistance, Can. J. Microbiol., 67 (2021) 119–137.
  • Y. Huan, Q. Kong, H. Mou, H. Yi, Antimicrobial peptides: Classification, design, application and research progress in multiple fields, Front. Microbiol., 11 (2020) 1–21.
  • G. Kuzderová, M. Rendošová, R. Gyepes, S. Sovová, D. Sabolová, M. Vilková, P. Olejníková, I. Bačová, S. Stokič, M. Kello, Z. Vargová, Antimicrobial and anticancer application of silver(I) dipeptide complexes, Molecules., 26 (2021) 1–27.
  • M.G. Nowak, A.S. Skwarecki, M.J. Milewska, Amino acid based antimicrobial agents – synthesis and properties, ChemMedChem., 16 (2021) 3513–3544.
  • M. Minami, T. Ando, S.N. Hashikawa, K. Torii, T. Hasegawa, D.A. Israel, K. Ina, K. Kusugami, H. Goto, M. Ohta, Effect of glycine on Helicobacter pylori in vitro, Antimicrob. Agents Chemother., 48 (2004) 3782–3788.
  • Z. Yan, Y. Kang, X. Wen, C. Xu, W. Chu, Effect of amino acids and glycyl dipeptides on micellization of antibacterial drug domiphen bromide, J. Surfactants Deterg., 20 (2017) 391–400.
  • A. Moretta, C. Scieuzo, A.M. Petrone, R. Salvia, M.D. Manniello, A. Franco, D. Lucchetti, A. Vassallo, H. Vogel, A. Sgambato, P. Falabella, Antimicrobial peptides: A new hope in biomedical and pharmaceutical fields, Front. Cell. Infect. Microbiol., 11 (2021) 1–26.
  • I. Soares, I. Rodrigues, P.M. da Costa, L.Gales, Antibacterial and antibiofilm properties of self-assembled dipeptide nanotubes, Int. J. Mol. Sci., 24 (2022) 328.
  • H. Barreteau, A. Kovac, A. Boniface, M. Sova, S. Gobec, D. Blanot, Cytoplasmic steps of peptidoglycan biosynthesis, FEMS Microbiol. Rev., 32(2) (2008) 168-207.
  • M. Idrees, A.R. Mohammad, N. Karodia, A. Rahman, Multimodal role of amino acids in microbial control and drug development, 9(6) (2020) 330.
  • D. Shcharbin, V. Zhogla, P. Kirsanov, I. Halets-bui, M. Bryszewska, M. Odabas, B. Onal, Dipeptide nanostructures: Synthesis, interactions, advantages and biomedical applications, Colloids Surf. B. Biointerfaces, 222 (2023) 113031.
  • A. Andrea, N. Molchanova, H. Jenssen, Antibiofilm peptides and peptidomimetics with focus on surface immobilization, Biomolecules, 8 (2018) 27.
  • M. Ghasemi, T. Turnbull, S. Sebastian, I. Kempson, The mtt assay: Utility, limitations, pitfalls, and interpretation in bulk and single-cell analysis, Int. J. Mol. Sci., 22 (2021) 12827.
  • G. Cakmak, C. Akay, M.B. Donmez, E. Mumcu, H.S. Akan, R. Sasany, S. Abou-Ayash, B. Yilmaz, Effect of potassium aluminum sulfate application on the viability of fibroblasts on a CAD-CAM feldspathic ceramic before and after thermocycling, Materials (Basel), 15 (2022) 1–8.
  • Z. Bedlovičová, Green synthesis of silver nanoparticles using actinomycetes, Green Synth. Silver Nanomater., 50 (2022) 547–569.
  • E. Kubat, M.A. Onur, O.A. Gurpinar, Cytotoxic Activity of Apixaban on HeLa Cells: An In vitro Study, Hacettepe J. Biol. Chem., 3 (2018) 395–402.
  • Y.Y. Qi, Q. Gan, Y.X. Liu, Y.H. Xiong, Z.W. Mao, X.Y. Le, Two new Cu(II) dipeptide complexes based on 5-methyl-2-(2′-pyridyl)benzimidazole as potential antimicrobial and anticancer drugs: Special exploration of their possible anticancer mechanism, Eur. J. Med. Chem., 154 (2018) 220–232.
  • J. Bojarska, A. Mieczkowski, Z. Ziora, M. Skwarczynski, I. Toth, A.O. Shalash, K. Parang, S.A. El-Mowafi, E.H.M. Mohammed, S. Elnagdy, M. Alkhazindar, W.M. Wolf, Cyclic dipeptides: The biological and structural landscape with special focus on the anti-cancer proline-based scaffold, Biomolecules, 11 (2021) 1515.
There are 40 citations in total.

Details

Primary Language English
Subjects Biologically Active Molecules
Journal Section Research Article
Authors

Gulcan Sahal 0000-0001-5994-1727

Handan Sevim Akan 0000-0002-8511-5258

Tuğçe Deniz Karaca 0000-0002-7471-1759

Publication Date October 11, 2024
Submission Date April 4, 2024
Acceptance Date July 26, 2024
Published in Issue Year 2024 Volume: 52 Issue: 4

Cite

APA Sahal, G., Sevim Akan, H., & Karaca, T. D. (2024). Antimicrobial, Antibiofilm and Anticancer Potentials of Glycine and Glycyl-Glycine; an in vitro study. Hacettepe Journal of Biology and Chemistry, 52(4), 273-283. https://doi.org/10.15671/hjbc.1464084
AMA Sahal G, Sevim Akan H, Karaca TD. Antimicrobial, Antibiofilm and Anticancer Potentials of Glycine and Glycyl-Glycine; an in vitro study. HJBC. October 2024;52(4):273-283. doi:10.15671/hjbc.1464084
Chicago Sahal, Gulcan, Handan Sevim Akan, and Tuğçe Deniz Karaca. “Antimicrobial, Antibiofilm and Anticancer Potentials of Glycine and Glycyl-Glycine; An in Vitro Study”. Hacettepe Journal of Biology and Chemistry 52, no. 4 (October 2024): 273-83. https://doi.org/10.15671/hjbc.1464084.
EndNote Sahal G, Sevim Akan H, Karaca TD (October 1, 2024) Antimicrobial, Antibiofilm and Anticancer Potentials of Glycine and Glycyl-Glycine; an in vitro study. Hacettepe Journal of Biology and Chemistry 52 4 273–283.
IEEE G. Sahal, H. Sevim Akan, and T. D. Karaca, “Antimicrobial, Antibiofilm and Anticancer Potentials of Glycine and Glycyl-Glycine; an in vitro study”, HJBC, vol. 52, no. 4, pp. 273–283, 2024, doi: 10.15671/hjbc.1464084.
ISNAD Sahal, Gulcan et al. “Antimicrobial, Antibiofilm and Anticancer Potentials of Glycine and Glycyl-Glycine; An in Vitro Study”. Hacettepe Journal of Biology and Chemistry 52/4 (October 2024), 273-283. https://doi.org/10.15671/hjbc.1464084.
JAMA Sahal G, Sevim Akan H, Karaca TD. Antimicrobial, Antibiofilm and Anticancer Potentials of Glycine and Glycyl-Glycine; an in vitro study. HJBC. 2024;52:273–283.
MLA Sahal, Gulcan et al. “Antimicrobial, Antibiofilm and Anticancer Potentials of Glycine and Glycyl-Glycine; An in Vitro Study”. Hacettepe Journal of Biology and Chemistry, vol. 52, no. 4, 2024, pp. 273-8, doi:10.15671/hjbc.1464084.
Vancouver Sahal G, Sevim Akan H, Karaca TD. Antimicrobial, Antibiofilm and Anticancer Potentials of Glycine and Glycyl-Glycine; an in vitro study. HJBC. 2024;52(4):273-8.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc