Year 2025,
Volume: 53 Issue: 3, 57 - 69, 01.07.2025
Minne Dekker
Anne-marie Zeeman
Burcu Gumuscu
References
- 1. P. Godoy, et al., Recent advances in 2D and 3D in vitro systems using primary hepatocytes, Hepatol. , 57 (2013) 550–559.
- 2. J. Wang, D. Huang, H. Yu, Y. Cheng, H. Ren, Y. Zhao, Developing tissue engineering strategies for liver regeneration." Eng. Regen., 3, (2022) 80-91.
- 3. M. R. Schneider, M. Oelgeschlaeger, T. Burgdorf, P. van Meer, P. Theunissen, A. S. Kienhuis, A. H. Piersma, R. J. Vandebriel, Applicability of organ-on-chip systems in toxicology and pharmacology, Crit. Rev. Toxicol., 51 (2021) 540-554.
- 4. G. Sipes, W. Bracken, M. Dorato, K. V. Deun, P. Smith, B. Berger, A. Heller, Concordance of toxicity of pharmaceuticals in humans and animals, Regul. Toxicol. Pharmacol., 32 (2000) 56–67.
- 5. K. H. Lee, J. Lee, S. H. Lee, 3D liver models on a microplatform: well-defined culture, engineering of liver tissue and liver-on-a-chip, Lab Chip, 15 (2015) 3822-3837.
- 6. L. A. Vernetti, N. Senutovitch, R. Boltz, R. DeBiasio, T. Y. Shun, A. Gough, D. L. Taylor, A human liver microphysiology platform for investigating physiology, drug safety, and disease models, Exp. Biol. Med., 242 (2017) 1605–1619.
- 7. S. J. Fey, K. Wrzesinski, Determination of drug toxicity using 3D spheroids constructed from an immortal human hepatocyte cell line. Toxicol. Sci., 127 (2012) 403-411.
- 8. T. Kostrzewski, T. Cornforth, S. A. Snow, La. Ouro-Gnao, C. Rowe, E. M. Large, D. J. Hughes, Three-dimensional perfused human in vitro model of non-alcoholic fatty liver disease, World J. Gastroenterol., 23 (2017) 204.
- 9. A. Ehrlich, D. Duche, G. Ouedraogo, Y. Nahmias, Challenges and opportunities in the design of liver-on-chip microdevices. An. Rev. Biomed. Eng., 21 (2019) 219-239.
- 10. K. J. Jang, M.A. Otieno, J. Ronxhi, H.K. Lim, L. Ewart, K. R. Kodella, D. B. Petropolis, G. Kulkarni, J. E. Rubins, D. Conegliano, J. Nawroth, Reproducing human and cross-species drug toxicities using a liver-chip, Sci. Transl. Med., 11(517) (2019) eaax5516.
- 11. R. Baudoin, A. Corlu, L. Griscom, C. Legallais, E. Leclerc, Trends in the development of microfluidic cell biochips for in vitro hepatotoxicity, Toxicol. In Vitro, 21 (2007) 535-544.
- 12. T. Messelmani, L. Morisseau, Y. Sakai, C. Legallais, A. Le Goff, E. Leclerc, R. Jellali, Liver organ-on-chip models for toxicity studies and risk assessment, Lab Chip, 22 (2022) 2423-2450.
- 13. N. K. Inamdar, J. T. Borenstein, Microfluidic cell culture models for tissue engineering, Cur. Opin. Biotechnol., 22 (2011) 681-689.
- 14. Y. Du, N. Li, H. Yang, C. Luo, Y. Gong, C. Tong, Y. Gao, S. Lü, M. Long, Mimicking liver sinusoidal structures and functions using a 3D-configured microfluidic chip, Lab Chip, 17 (2017) 782-794.
- 15. H. V. Unadkat, M. Hulsman, K. Cornelissen, B. J. Papenburg, R. K. Truckenmüller, A. E. Carpenter, M. Wessling, G. F. Post, M. Uetz, M.J. Reinders, D. Stamatialis, An algorithm-based topographical biomaterials library to instruct cell fate, Proc. Natl. Acad. Sci. U.S.A., 108 (2011) 16565–16570.
- 16. N. R. M. Beijer, A. S. Vasilevich, B. Pilavci, R. K. Truckenmüller, Y. Zhao, S. Singh, B. J. Papenburg, J. de Boer, TopoWellPlate: A well-plate-based screening platform to study cell–surface topography interactions, Adv. Biosyst., 1 (2017) 1700002.
- 17. N. R. Beijer, Z. M. Nauryzgaliyeva, E. M. Arteaga, L. Pieuchot, K. Anselme, J. van de Peppel, A. S. Vasilevich, N. Groen, N. Roumans, D. G. Hebels, J. de Boer, Dynamic adaptation of mesenchymal stem cell physiology upon exposure to surface micropatterns, Sci. Rep., 9 (2019) 45284.
- 18. J. You, V. K. Raghunathan, K. J. Son, D. Patel, A. Haque, C. J. Murphy, A. Revzin, Impact of nanotopography, heparin hydrogel microstructures, and encapsulated fibroblasts on phenotype of primary hepatocytes, ACS Appl. Mater. Int., 7 (2015) 12299-12308.
- 19. B. G. Munoz‐Robles, I. Kopyeva, C. A. DeForest, Surface patterning of hydrogel biomaterials to probe and direct cell–matrix interactions, Adv. Mater. Int., 7 (2020) 2001198.
- 20. M. Ortega-Ribera, J. Yeste, R. Villa, J. Gracia-Sancho, Nanoengineered Biomaterials for the treatment of liver diseases, Nanoengineered biomaterials for regenerative medicine, Elsevier Press, New York, USA, 2019.
- 21. E. Zahmatkesh, A. Othman, B. Braun, R. Aspera, M. Ruoß, A. Piryaei, M. Vosough, A. Nüssler, In vitro modeling of liver fibrosis in 3D microtissues using scalable micropatterning system, Arch. Toxicol., 96 (2022) 1799-1813.
- 22. S.A. Abdellatef, A. Ohi, T. Nabatame, A. Taniguchi, The effect of physical and chemical cues on hepatocellular function and morphology, Int. J. Mol. Sci., 15 (2014)4299-4317.
- 23. C. Poon, Measuring the density and viscosity of culture media for optimized computational fluid dynamics analysis of in vitro devices, J. Mech. Behav. Biomed. Mater., 126 (2022) 105024.
- 24. V. Vilas-Boas, A. Cooreman, E. Gijbels, R. Van Campenhout, E. Gustafson, S. Ballet, P. Annaert, B. Cogliati, M. Vinken, Primary hepatocytes and their cultures for the testing of drug-induced liver injury, Adv. Pharmacol., 85 (2019) 1–30.
- 25. J. Aerts, Development of a microfluidic system for the long-term culture of hepatocytes, M.Sc. dissertation, Technol. Univ. Eindhoven, 2021.
- 26. M. Dekker, Assessment of the dynamic interplay of shear stress and surface topographies on hepatocytes in a microfluidic platform, M.Sc. dissertation, Technol. Univ. Eindhoven, 2022.
- 27. A. Bachmann, M. Moll, E. Gottwald, C. Nies, R. Zantl, H. Wagner, B. Burkhardt, J. J. M. Sánchez, R. Ladurner, W. Thasler, G. Damm, 3D cultivation techniques for primary human hepatocytes, Microarrays, 4 (2015) 64–83.
- 28. J. Park, F. Berthiaume, M. Toner, M.L. Yarmush, A.W.Tilles, Microfabricated grooved substrates as platforms for bioartificial liver reactors, Biotechnol. Bioeng., 90 (2005) 632–644.
- 29. Y. C. Toh, T. C. Lim, D. Tai, G. Xiao, D. van Noort, H. Yu, A microfluidic 3D hepatocyte chip for drug toxicity testing, Lab Chip, 9 (2009) 2026–2035.
- 30. HepaRG - Features [Online]. Available: https://www.heparg.com/rubrique-features (Accessed on 13 March 2025).
- 31. H. Rashidi, S. Alhaque, D. Szkolnicka, O. Flint, D. C. Hay, Fluid shear stress modulation of hepatocyte-like cell function, Arch. Toxicol., 90 (2016) 1757–1761.
- 32. A. W. Tilles, H. Baskaran, P. Roy, M. L. Yarmush, M. Toner, Effects of oxygenation and flow on the viability and function of rat hepatocytes cocultured in a microchannel flat‐plate bioreactor, Biotechnol. Bioeng., 73(2001) 379–392.
- 33. G. Mascetti, S. Carrara, L. Vergani, Relationship between chromatin compactness and dye uptake for in situ chromatin stained with DAPI, Cytom.: J. Int. Soc. Anal. Cytol., 44 (2001) 113–119.
- 34. R. M. Martin, M. C. Cardoso, Chromatin condensation modulates access and binding of nuclear proteins, FASEB J., 24 (2010) 1066.
- 35. M. Lübberstedt, U. Müller-Vieira, M. Mayer, K. M. Biemel, F. Knöspel, D. Knobeloch, A. K. Nüssler, J. C. Gerlach, K. Zeilinger, HepaRG human hepatic cell line utility as a surrogate for primary human hepatocytes in drug metabolism assessment in vitro, J. Pharmacol. Toxicol. Methods, 63 (2011) 59–68.
- 36. S. Kidambi, R. S. Yarmush, E. Novik, P. Chao, M. L. Yarmush, Y. Nahmias, Oxygen-mediated enhancement of primary hepatocyte metabolism, functional polarization, gene expression, and drug clearance, Proc. Natl. Acad. Sci., 106 (2009) 15714–15719.
- 37. R. Hoekstra, G. A. A. Nibourg, T. V. van der Hoeven, M. T. Ackermans, T. B. M. Hakvoort, T. M. van Gulik, W. H. Lamers, R. P. Oude Elferink, R. A. F. M. Chamuleau, The HepaRG cell line is suitable for bioartificial liver application, Int. J. Biochem. Cell Biol., 43(2011) 1483–1489.
- 38. R. Jellali, T. Bricks, S. Jacques, M. J. Fleury, P. Paullier, F. Merlier, E. Leclerc, Long‐term human primary hepatocyte cultures in a microfluidic liver biochip show maintenance of mRNA levels and higher drug metabolism compared with Petri cultures, Biopharm. Drug Dispos., 37 (2016) 264–275.
- 39. P. Sun, G. Zhang, X. Su, C. Jin, B. Yu, X. Yu, Z. Lv, H. Ma, M. Zhang, W. Wei, W. Li, Maintenance of primary hepatocyte functions in vitro by inhibiting mechanical tension-induced YAP activation, Cell Rep., 29 (2019) 3212–3222.
- 40. K. Meyer, H. Morales‐Navarrete, S. Seifert, M. Wilsch‐Braeuninger, U. Dahmen, E. M. Tanaka, L. Brusch, Y. Kalaidzidis, M. Zerial, Bile canaliculi remodeling activates YAP via the actin cytoskeleton during liver regeneration, Mol. Syst. Biol., 16 (2020) e8985.
- 41. M. Hegde, R. Jindal, A. Bhushan, S. S. Bale, W. J. McCarty, I. Golberg, O. B. Usta, M. L. Yarmush, Dynamic interplay of flow and collagen stabilizes primary hepatocytes culture in a microfluidic platform, Lab Chip, 14 (2014) 2033–2039.
- 42. J. Li, R. S. Settivari, M. J. LeBaron, M. S. Marty, Functional comparison of HepaRG cells and primary human hepatocytes in sandwich and spheroid culture as repeated-exposure models for hepatotoxicity, Appl. In Vitro Toxicol., 5 (2019) 187–195.
Surface pattern-embedded microfluidic chip for long-term maintenance of hepatocytes
Year 2025,
Volume: 53 Issue: 3, 57 - 69, 01.07.2025
Minne Dekker
Anne-marie Zeeman
Burcu Gumuscu
Abstract
Functional hepatocytes play a crucial role in drug screening and cytotoxicity studies. However, primary hepatocytes quickly lose their differentiated state and specialized functions within hours to days after seeding, limiting the utility of in vitro models for long-term drug response and toxicity assessments. To overcome this limitation, we developed a microfluidic system designed to sustain the long-term culture of hepatocytes by optimizing flow conditions and incorporating microtopography to support cell-specific functions. A microfluidic chip with integrated topography was fabricated using soft lithography and characterized through numerical studies. Flow parameters were refined using HepaRG cells, which served as a model to optimize conditions. Hepatocyte-specific functions of HepaRG cells and primary macaque hepatocytes were evaluated under static and flow conditions over time using albumin and urea assays. The system demonstrated its ability to support HepaRG cells for up to 25 days and primary macaque hepatocytes for up to 5 days. Notably, flow conditions enhanced metabolic activity, with HepaRG cells showing a 70-fold increase in albumin secretion and a 40% rise in urea production by day 14, compared to static cultures. Similarly, primary macaque hepatocytes exhibited a 120-fold increase in albumin secretion under flow by day 8 relative to static conditions. These results highlight the potential of this optimized microfluidic platform for long-term hepatocyte culture, making it a valuable tool for future applications in drug screening and toxicity testing.
Ethical Statement
This study was conducted in accordance with ethical guidelines and regulations, ensuring the welfare and rights of all living organisms involved. Appropriate institutional and legal approvals were obtained prior to the experiments, and efforts were made to minimize harm and ensure the responsible use of resources.
Supporting Institution
Eindhoven University of Technology
Thanks
We thank all the Biosensors and Devices Lab and BioInterface Sciences Group members for helpful discussions and suggestions throughout the study. We thank Jan de Boer for his insightful contributions throughout the project and Joska Aerts for her contributions in the chip fabrication and off-chip experiments. This work was supported by the grant from TU/e Irene Curie Fellowship (to BG).
References
- 1. P. Godoy, et al., Recent advances in 2D and 3D in vitro systems using primary hepatocytes, Hepatol. , 57 (2013) 550–559.
- 2. J. Wang, D. Huang, H. Yu, Y. Cheng, H. Ren, Y. Zhao, Developing tissue engineering strategies for liver regeneration." Eng. Regen., 3, (2022) 80-91.
- 3. M. R. Schneider, M. Oelgeschlaeger, T. Burgdorf, P. van Meer, P. Theunissen, A. S. Kienhuis, A. H. Piersma, R. J. Vandebriel, Applicability of organ-on-chip systems in toxicology and pharmacology, Crit. Rev. Toxicol., 51 (2021) 540-554.
- 4. G. Sipes, W. Bracken, M. Dorato, K. V. Deun, P. Smith, B. Berger, A. Heller, Concordance of toxicity of pharmaceuticals in humans and animals, Regul. Toxicol. Pharmacol., 32 (2000) 56–67.
- 5. K. H. Lee, J. Lee, S. H. Lee, 3D liver models on a microplatform: well-defined culture, engineering of liver tissue and liver-on-a-chip, Lab Chip, 15 (2015) 3822-3837.
- 6. L. A. Vernetti, N. Senutovitch, R. Boltz, R. DeBiasio, T. Y. Shun, A. Gough, D. L. Taylor, A human liver microphysiology platform for investigating physiology, drug safety, and disease models, Exp. Biol. Med., 242 (2017) 1605–1619.
- 7. S. J. Fey, K. Wrzesinski, Determination of drug toxicity using 3D spheroids constructed from an immortal human hepatocyte cell line. Toxicol. Sci., 127 (2012) 403-411.
- 8. T. Kostrzewski, T. Cornforth, S. A. Snow, La. Ouro-Gnao, C. Rowe, E. M. Large, D. J. Hughes, Three-dimensional perfused human in vitro model of non-alcoholic fatty liver disease, World J. Gastroenterol., 23 (2017) 204.
- 9. A. Ehrlich, D. Duche, G. Ouedraogo, Y. Nahmias, Challenges and opportunities in the design of liver-on-chip microdevices. An. Rev. Biomed. Eng., 21 (2019) 219-239.
- 10. K. J. Jang, M.A. Otieno, J. Ronxhi, H.K. Lim, L. Ewart, K. R. Kodella, D. B. Petropolis, G. Kulkarni, J. E. Rubins, D. Conegliano, J. Nawroth, Reproducing human and cross-species drug toxicities using a liver-chip, Sci. Transl. Med., 11(517) (2019) eaax5516.
- 11. R. Baudoin, A. Corlu, L. Griscom, C. Legallais, E. Leclerc, Trends in the development of microfluidic cell biochips for in vitro hepatotoxicity, Toxicol. In Vitro, 21 (2007) 535-544.
- 12. T. Messelmani, L. Morisseau, Y. Sakai, C. Legallais, A. Le Goff, E. Leclerc, R. Jellali, Liver organ-on-chip models for toxicity studies and risk assessment, Lab Chip, 22 (2022) 2423-2450.
- 13. N. K. Inamdar, J. T. Borenstein, Microfluidic cell culture models for tissue engineering, Cur. Opin. Biotechnol., 22 (2011) 681-689.
- 14. Y. Du, N. Li, H. Yang, C. Luo, Y. Gong, C. Tong, Y. Gao, S. Lü, M. Long, Mimicking liver sinusoidal structures and functions using a 3D-configured microfluidic chip, Lab Chip, 17 (2017) 782-794.
- 15. H. V. Unadkat, M. Hulsman, K. Cornelissen, B. J. Papenburg, R. K. Truckenmüller, A. E. Carpenter, M. Wessling, G. F. Post, M. Uetz, M.J. Reinders, D. Stamatialis, An algorithm-based topographical biomaterials library to instruct cell fate, Proc. Natl. Acad. Sci. U.S.A., 108 (2011) 16565–16570.
- 16. N. R. M. Beijer, A. S. Vasilevich, B. Pilavci, R. K. Truckenmüller, Y. Zhao, S. Singh, B. J. Papenburg, J. de Boer, TopoWellPlate: A well-plate-based screening platform to study cell–surface topography interactions, Adv. Biosyst., 1 (2017) 1700002.
- 17. N. R. Beijer, Z. M. Nauryzgaliyeva, E. M. Arteaga, L. Pieuchot, K. Anselme, J. van de Peppel, A. S. Vasilevich, N. Groen, N. Roumans, D. G. Hebels, J. de Boer, Dynamic adaptation of mesenchymal stem cell physiology upon exposure to surface micropatterns, Sci. Rep., 9 (2019) 45284.
- 18. J. You, V. K. Raghunathan, K. J. Son, D. Patel, A. Haque, C. J. Murphy, A. Revzin, Impact of nanotopography, heparin hydrogel microstructures, and encapsulated fibroblasts on phenotype of primary hepatocytes, ACS Appl. Mater. Int., 7 (2015) 12299-12308.
- 19. B. G. Munoz‐Robles, I. Kopyeva, C. A. DeForest, Surface patterning of hydrogel biomaterials to probe and direct cell–matrix interactions, Adv. Mater. Int., 7 (2020) 2001198.
- 20. M. Ortega-Ribera, J. Yeste, R. Villa, J. Gracia-Sancho, Nanoengineered Biomaterials for the treatment of liver diseases, Nanoengineered biomaterials for regenerative medicine, Elsevier Press, New York, USA, 2019.
- 21. E. Zahmatkesh, A. Othman, B. Braun, R. Aspera, M. Ruoß, A. Piryaei, M. Vosough, A. Nüssler, In vitro modeling of liver fibrosis in 3D microtissues using scalable micropatterning system, Arch. Toxicol., 96 (2022) 1799-1813.
- 22. S.A. Abdellatef, A. Ohi, T. Nabatame, A. Taniguchi, The effect of physical and chemical cues on hepatocellular function and morphology, Int. J. Mol. Sci., 15 (2014)4299-4317.
- 23. C. Poon, Measuring the density and viscosity of culture media for optimized computational fluid dynamics analysis of in vitro devices, J. Mech. Behav. Biomed. Mater., 126 (2022) 105024.
- 24. V. Vilas-Boas, A. Cooreman, E. Gijbels, R. Van Campenhout, E. Gustafson, S. Ballet, P. Annaert, B. Cogliati, M. Vinken, Primary hepatocytes and their cultures for the testing of drug-induced liver injury, Adv. Pharmacol., 85 (2019) 1–30.
- 25. J. Aerts, Development of a microfluidic system for the long-term culture of hepatocytes, M.Sc. dissertation, Technol. Univ. Eindhoven, 2021.
- 26. M. Dekker, Assessment of the dynamic interplay of shear stress and surface topographies on hepatocytes in a microfluidic platform, M.Sc. dissertation, Technol. Univ. Eindhoven, 2022.
- 27. A. Bachmann, M. Moll, E. Gottwald, C. Nies, R. Zantl, H. Wagner, B. Burkhardt, J. J. M. Sánchez, R. Ladurner, W. Thasler, G. Damm, 3D cultivation techniques for primary human hepatocytes, Microarrays, 4 (2015) 64–83.
- 28. J. Park, F. Berthiaume, M. Toner, M.L. Yarmush, A.W.Tilles, Microfabricated grooved substrates as platforms for bioartificial liver reactors, Biotechnol. Bioeng., 90 (2005) 632–644.
- 29. Y. C. Toh, T. C. Lim, D. Tai, G. Xiao, D. van Noort, H. Yu, A microfluidic 3D hepatocyte chip for drug toxicity testing, Lab Chip, 9 (2009) 2026–2035.
- 30. HepaRG - Features [Online]. Available: https://www.heparg.com/rubrique-features (Accessed on 13 March 2025).
- 31. H. Rashidi, S. Alhaque, D. Szkolnicka, O. Flint, D. C. Hay, Fluid shear stress modulation of hepatocyte-like cell function, Arch. Toxicol., 90 (2016) 1757–1761.
- 32. A. W. Tilles, H. Baskaran, P. Roy, M. L. Yarmush, M. Toner, Effects of oxygenation and flow on the viability and function of rat hepatocytes cocultured in a microchannel flat‐plate bioreactor, Biotechnol. Bioeng., 73(2001) 379–392.
- 33. G. Mascetti, S. Carrara, L. Vergani, Relationship between chromatin compactness and dye uptake for in situ chromatin stained with DAPI, Cytom.: J. Int. Soc. Anal. Cytol., 44 (2001) 113–119.
- 34. R. M. Martin, M. C. Cardoso, Chromatin condensation modulates access and binding of nuclear proteins, FASEB J., 24 (2010) 1066.
- 35. M. Lübberstedt, U. Müller-Vieira, M. Mayer, K. M. Biemel, F. Knöspel, D. Knobeloch, A. K. Nüssler, J. C. Gerlach, K. Zeilinger, HepaRG human hepatic cell line utility as a surrogate for primary human hepatocytes in drug metabolism assessment in vitro, J. Pharmacol. Toxicol. Methods, 63 (2011) 59–68.
- 36. S. Kidambi, R. S. Yarmush, E. Novik, P. Chao, M. L. Yarmush, Y. Nahmias, Oxygen-mediated enhancement of primary hepatocyte metabolism, functional polarization, gene expression, and drug clearance, Proc. Natl. Acad. Sci., 106 (2009) 15714–15719.
- 37. R. Hoekstra, G. A. A. Nibourg, T. V. van der Hoeven, M. T. Ackermans, T. B. M. Hakvoort, T. M. van Gulik, W. H. Lamers, R. P. Oude Elferink, R. A. F. M. Chamuleau, The HepaRG cell line is suitable for bioartificial liver application, Int. J. Biochem. Cell Biol., 43(2011) 1483–1489.
- 38. R. Jellali, T. Bricks, S. Jacques, M. J. Fleury, P. Paullier, F. Merlier, E. Leclerc, Long‐term human primary hepatocyte cultures in a microfluidic liver biochip show maintenance of mRNA levels and higher drug metabolism compared with Petri cultures, Biopharm. Drug Dispos., 37 (2016) 264–275.
- 39. P. Sun, G. Zhang, X. Su, C. Jin, B. Yu, X. Yu, Z. Lv, H. Ma, M. Zhang, W. Wei, W. Li, Maintenance of primary hepatocyte functions in vitro by inhibiting mechanical tension-induced YAP activation, Cell Rep., 29 (2019) 3212–3222.
- 40. K. Meyer, H. Morales‐Navarrete, S. Seifert, M. Wilsch‐Braeuninger, U. Dahmen, E. M. Tanaka, L. Brusch, Y. Kalaidzidis, M. Zerial, Bile canaliculi remodeling activates YAP via the actin cytoskeleton during liver regeneration, Mol. Syst. Biol., 16 (2020) e8985.
- 41. M. Hegde, R. Jindal, A. Bhushan, S. S. Bale, W. J. McCarty, I. Golberg, O. B. Usta, M. L. Yarmush, Dynamic interplay of flow and collagen stabilizes primary hepatocytes culture in a microfluidic platform, Lab Chip, 14 (2014) 2033–2039.
- 42. J. Li, R. S. Settivari, M. J. LeBaron, M. S. Marty, Functional comparison of HepaRG cells and primary human hepatocytes in sandwich and spheroid culture as repeated-exposure models for hepatotoxicity, Appl. In Vitro Toxicol., 5 (2019) 187–195.