Research Article
BibTex RIS Cite

Production of Value-Added Bioproducts Using a Modified Continuous Biofilm Reactor by Citrobacter Freundii DSM 15979

Year 2021, Volume: 8 Issue: 1, 55 - 62, 31.03.2021
https://doi.org/10.17350/HJSE19030000213

Abstract

The present paper reports the results of Citrobacter freundii, strain DSM 15979, that was tested for its ability to produce value added chemicals from biodiesel derived glycerol in a mesophilic fluidized bed biofilm reactor operating under continuous conditions at a specified hydraulic retention time (HRT) at 30°C. Elevating feed concentrations (10 to 144 g/L) were tested in order to understand their effects on simultaneous production of value added products with immobilized whole cells. Gin was found to be a significant independent variable for the productions of 1,3-PDO, 2,3-BD, ethanol, acetic, succinic and lactic acids under different organic loading rates (OLR). The major metabolite in the metabolic pathway was found to be 1,3-PDO followed by 2,3-BD reaching the maximum values as 26.1 and 18.8 g/L under the conditions of 92 g/L crude glycerol and 8 h, which is represents an OLR of 11.5 g/L.h, suggesting the formation of biofilms favor the utilization of high substrate concentration to enhance the mixed fermentation.

Supporting Institution

ERASMUS+

Thanks

The author would like to acknowledge Prof. Dr. Nuri Azbar for his insightful discussions. The author would like to acknowledge Prof. Dr. Fabio Fava and Assoc. Prof. Dr. Lorenzo Bertin for their valuable contributions and for providing the laboratory infrastructure. The author would like to thank Dr. Selene Grilli for her technical assistance with HPLC analysis. The author would like to acknowledge the ERASMUS+ Mobility Program.

References

  • Kumar, V., Durgapal, M., Sankaranarayanan, M., Somasundar, A., Rathnasingh, C., Song, H. H., Park, S. 2016. Effects of mutation of 2,3-butanediol formation pathway on glycerol metabolism and 1,3-propanediol production by Klebsiella pneumoniae J2B. Bioresource Technology, 214: 432–440.
  • Drozdzyńska, A., Pawlicka, J., Kubiak, P., Kośmider, A., Pranke, D., Olejnik-Schmidt, A., Czaczyk, K. 2014. Conversion of glycerol to 1,3-propanediol by Citrobacter freundii and Hafnia alvei - newly isolated strains from the Enterobacteriaceae. New Biotechnology, 31(5): 402–410.
  • Casali, S., Gungormusler, M., Bertin, L., Fava, F., Azbar, N. 2012. Development of a biofilm technology for the production of 1,3-propanediol (1,3-PDOO) from crude glycerol. Biochemical Engineering Journal, 64: 84-90.
  • da Silva, G. P., Mack, M., Contiero, J. 2009. Glycerol: A promising and abundant carbon source for industrial microbiology. Biotechnology Advances, 27(1): 30–39.
  • Vivek, N., Aswathi, T. V., Sven, P. R., Pandey, A., Binod, P. 2017. Self-cycling fermentation for 1,3-propanediol production: Comparative evaluation of metabolite flux in cell recycling, simple batch and continuous processes using Lactobacillus brevis N1E9.3.3 strain. Journal of Biotechnology, 259(April): 110–119.
  • Pflügl, S., Marx, H., Mattanovich, D., Sauer, M. 2012. 1,3-Propanediol production from glycerol with Lactobacillus diolivorans. Bioresource Technology, 119: 133–140.
  • Zabed, H. M., Zhang, Y., Guo, Q., Yun, J., Yang, M., Zhang, G., Qi, X. 2019. Co-biosynthesis of 3-hydroxypropionic acid and 1,3-propanediol by a newly isolated Lactobacillus reuteri strain during whole cell biotransformation of glycerol. Journal of Cleaner Production, 226(2019): 432–442.
  • Yun, J., Yang, M., Magocha, T. A., Zhang, H., Xue, Y., Zhang, G., Sun, W. 2018. Production of 1,3-propanediol using a novel 1,3-propanediol dehydrogenase from isolated Clostridium butyricum and co-biotransformation of whole cells. Bioresource Technology, 247(September): 838–843.
  • Guo, Y., Dai, L., Xin, B., Tao, F., Tang, H., Shen, Y., Xu, P. 2017. 1,3-Propanediol production by a newly isolated strain, Clostridium perfringens GYL. Bioresource Technology, 233: 406–412.
  • González-Pajuelo, M., Meynial-Salles, I., Mendes, F., Andrade, J. C., Vasconcelos, I., Soucaille, P. 2005. Metabolic engineering of Clostridium acetobutylicum for the industrial production of 1,3-propanediol from glycerol. Metabolic Engineering, 7(5–6): 329–336.
  • Gallazzi, A., Branska, B., Marinelli, F., Patakova, P. 2015. Continuous production of n-butanol by Clostridium pasteurianum DSM 525 using suspended and surface-immobilized cells. Journal of Biotechnology, 216: 29–35.
  • Sanguanchaipaiwong, V., Leksawasdi, N. 2017. Using Glycerol as a Sole Carbon Source for Clostridium beijerinckii. Fermentation. Energy Procedia, 138: 1105–1109.
  • da Silva Ruy, A. D., de Brito Alves, R. M., Reis Hewer, T. L., de Aguiar Pontes, D., Gomes Teixeira, L. S., Magalhães Pontes, L. A. 2020. Catalysts for glycerol hydrogenolysis to 1,3-propanediol: A review of chemical routes and market. Catalysis Today, (June): 0–1.
  • Ji, X. J., Huang, H., Ouyang, P. K. 2011. Microbial 2,3-butanediol production: A state-of-the-art review. Biotechnology Advances, 29(3): 351–364.
  • Kalck, P., Le Berre, C., Serp, P. 2020. Recent advances in the methanol carbonylation reaction into acetic acid. Coordination Chemistry Reviews, 402: 213078.
  • Sun, Y. Q., Shen, J. T., Yan, L., Zhou, J. J., Jiang, L. L., Chen, Y., Xiu, Z. L. 2018. Advances in bioconversion of glycerol to 1,3-propanediol: Prospects and challenges. Process Biochemistry, 71(December): 134–146.
  • Qureshi, N., Annous, B. A., Ezeji, T. C., Karcher, P., Maddox, I. S. 2005. Biofilm reactors for industrial bioconversion process: Employing potential of enhanced reaction rates. Microbial Cell Factories, 4: 1–21.
  • Nemati, M., Webb, C. 2011. Immobilized Cell Bioreactors. Comprehensive Biotechnology, Second Edition (Second Edi., Vol. 2). Elsevier B.V.
  • Paranhos, A. G. de O., Silva, E. L. 2020. Statistical optimization of H2, 1,3-propanediol and propionic acid production from crude glycerol using an anaerobic fluidized bed reactor: Interaction effects of substrate concentration and hydraulic retention time. Biomass and Bioenergy, 138(March): 105575.
  • Sittijunda, S., Reungsang, A. 2017. Fermentation of hydrogen, 1,3-propanediol and ethanol from glycerol as affected by organic loading rate using up-flow anaerobic sludge blanket (UASB) reactor. International Journal of Hydrogen Energy, 42(45): 27558–27569.
  • APHA. 1995. Standard Methods for the Examination of Water and Wastewater, AWWA, WPCF (19th ed.). Washington, DC, USA: American Public Health Association.
  • Szymanowska-Powałowska, D., Leja, K. 2014. An increasing of the efficiency of microbiological synthesis of 1,3-propanediol from crude glycerol by the concentration of biomass. Electronic Journal of Biotechnology, 17(2): 72–78.
  • Aquino de Souza, E., Rossi, D. M., Záchia Ayub, M. A. Ô. 2014. Bioconversion of residual glycerol from biodiesel synthesis into 1,3-propanediol using immobilized cells of Klebsiella pneumoniae BLh-1. Renewable Energy, 72: 253–257.
  • Wong, C. L., Huang, C. C., Chen, W. M., Chang, J. S. 2011. Converting crude glycerol to 1,3-propandiol using resting and immobilized Klebsiella sp. HE-2 cells. Biochemical Engineering Journal, 58–59(1): 177–183.
  • Yang, X., Kim, D. S., Choi, H. S., Kim, C. K., Thapa, L. P., Park, C., Kim, S. W. 2017. Repeated batch production of 1,3-propanediol from biodiesel derived waste glycerol by Klebsiella pneumoniae. Chemical Engineering Journal, 314: 660–669.
  • Metsoviti, M., Zeng, A. P., Koutinas, A. A., Papanikolaou, S. 2013. Enhanced 1,3-propanediol production by a newly isolated Citrobacter freundii strain cultivated on biodiesel-derived waste glycerol through sterile and non-sterile bioprocesses. Journal of Biotechnology, 163(4): 408–418.
  • Zeng, A. P., Biebl, H., Schlieker, H., Deckwer, W. D. 1993. Pathway analysis of glycerol fermentation by Klebsiella pneumoniae: Regulation of reducing equivalent balance and product formation. Enzyme and Microbial Technology, 15(9): 770–779.
  • Pflugmacher, U., Gottschalk, G. 1994. Development of an immobilized cell reactor for the production of 1,3-propanediol by Citrobacter freundii. Applied Microbiology and Biotechnology, 41(3): 313–316.
  • Zheng, Z. Ming, Guo, N. ni, Hao, J., Cheng, K. K., Sun, Y., Liu, D. Hua. 2009. Scale-up of micro-aerobic 1,3-propanediol production with Klebsiella pneumoniae CGMCC 1.6366. Process Biochemistry, 44(8): 944–948.
  • Chatzifragkou, A., Papanikolaou, S., Dietz, D., Doulgeraki, A. I., Nychas, G. J. E., Zeng, A. P. 2011. Production of 1,3-propanediol by Clostridium butyricum growing on biodiesel-derived crude glycerol through a non-sterilized fermentation process. Applied Microbiology and Biotechnology, 91(1): 101–112.
  • Anand, P., Saxena, R. K. 2012. A comparative study of solvent-assisted pretreatment of biodiesel derived crude glycerol on growth and 1,3-propanediol production from Citrobacter freundii. New Biotechnology, 29(2): 199–205.
Year 2021, Volume: 8 Issue: 1, 55 - 62, 31.03.2021
https://doi.org/10.17350/HJSE19030000213

Abstract

References

  • Kumar, V., Durgapal, M., Sankaranarayanan, M., Somasundar, A., Rathnasingh, C., Song, H. H., Park, S. 2016. Effects of mutation of 2,3-butanediol formation pathway on glycerol metabolism and 1,3-propanediol production by Klebsiella pneumoniae J2B. Bioresource Technology, 214: 432–440.
  • Drozdzyńska, A., Pawlicka, J., Kubiak, P., Kośmider, A., Pranke, D., Olejnik-Schmidt, A., Czaczyk, K. 2014. Conversion of glycerol to 1,3-propanediol by Citrobacter freundii and Hafnia alvei - newly isolated strains from the Enterobacteriaceae. New Biotechnology, 31(5): 402–410.
  • Casali, S., Gungormusler, M., Bertin, L., Fava, F., Azbar, N. 2012. Development of a biofilm technology for the production of 1,3-propanediol (1,3-PDOO) from crude glycerol. Biochemical Engineering Journal, 64: 84-90.
  • da Silva, G. P., Mack, M., Contiero, J. 2009. Glycerol: A promising and abundant carbon source for industrial microbiology. Biotechnology Advances, 27(1): 30–39.
  • Vivek, N., Aswathi, T. V., Sven, P. R., Pandey, A., Binod, P. 2017. Self-cycling fermentation for 1,3-propanediol production: Comparative evaluation of metabolite flux in cell recycling, simple batch and continuous processes using Lactobacillus brevis N1E9.3.3 strain. Journal of Biotechnology, 259(April): 110–119.
  • Pflügl, S., Marx, H., Mattanovich, D., Sauer, M. 2012. 1,3-Propanediol production from glycerol with Lactobacillus diolivorans. Bioresource Technology, 119: 133–140.
  • Zabed, H. M., Zhang, Y., Guo, Q., Yun, J., Yang, M., Zhang, G., Qi, X. 2019. Co-biosynthesis of 3-hydroxypropionic acid and 1,3-propanediol by a newly isolated Lactobacillus reuteri strain during whole cell biotransformation of glycerol. Journal of Cleaner Production, 226(2019): 432–442.
  • Yun, J., Yang, M., Magocha, T. A., Zhang, H., Xue, Y., Zhang, G., Sun, W. 2018. Production of 1,3-propanediol using a novel 1,3-propanediol dehydrogenase from isolated Clostridium butyricum and co-biotransformation of whole cells. Bioresource Technology, 247(September): 838–843.
  • Guo, Y., Dai, L., Xin, B., Tao, F., Tang, H., Shen, Y., Xu, P. 2017. 1,3-Propanediol production by a newly isolated strain, Clostridium perfringens GYL. Bioresource Technology, 233: 406–412.
  • González-Pajuelo, M., Meynial-Salles, I., Mendes, F., Andrade, J. C., Vasconcelos, I., Soucaille, P. 2005. Metabolic engineering of Clostridium acetobutylicum for the industrial production of 1,3-propanediol from glycerol. Metabolic Engineering, 7(5–6): 329–336.
  • Gallazzi, A., Branska, B., Marinelli, F., Patakova, P. 2015. Continuous production of n-butanol by Clostridium pasteurianum DSM 525 using suspended and surface-immobilized cells. Journal of Biotechnology, 216: 29–35.
  • Sanguanchaipaiwong, V., Leksawasdi, N. 2017. Using Glycerol as a Sole Carbon Source for Clostridium beijerinckii. Fermentation. Energy Procedia, 138: 1105–1109.
  • da Silva Ruy, A. D., de Brito Alves, R. M., Reis Hewer, T. L., de Aguiar Pontes, D., Gomes Teixeira, L. S., Magalhães Pontes, L. A. 2020. Catalysts for glycerol hydrogenolysis to 1,3-propanediol: A review of chemical routes and market. Catalysis Today, (June): 0–1.
  • Ji, X. J., Huang, H., Ouyang, P. K. 2011. Microbial 2,3-butanediol production: A state-of-the-art review. Biotechnology Advances, 29(3): 351–364.
  • Kalck, P., Le Berre, C., Serp, P. 2020. Recent advances in the methanol carbonylation reaction into acetic acid. Coordination Chemistry Reviews, 402: 213078.
  • Sun, Y. Q., Shen, J. T., Yan, L., Zhou, J. J., Jiang, L. L., Chen, Y., Xiu, Z. L. 2018. Advances in bioconversion of glycerol to 1,3-propanediol: Prospects and challenges. Process Biochemistry, 71(December): 134–146.
  • Qureshi, N., Annous, B. A., Ezeji, T. C., Karcher, P., Maddox, I. S. 2005. Biofilm reactors for industrial bioconversion process: Employing potential of enhanced reaction rates. Microbial Cell Factories, 4: 1–21.
  • Nemati, M., Webb, C. 2011. Immobilized Cell Bioreactors. Comprehensive Biotechnology, Second Edition (Second Edi., Vol. 2). Elsevier B.V.
  • Paranhos, A. G. de O., Silva, E. L. 2020. Statistical optimization of H2, 1,3-propanediol and propionic acid production from crude glycerol using an anaerobic fluidized bed reactor: Interaction effects of substrate concentration and hydraulic retention time. Biomass and Bioenergy, 138(March): 105575.
  • Sittijunda, S., Reungsang, A. 2017. Fermentation of hydrogen, 1,3-propanediol and ethanol from glycerol as affected by organic loading rate using up-flow anaerobic sludge blanket (UASB) reactor. International Journal of Hydrogen Energy, 42(45): 27558–27569.
  • APHA. 1995. Standard Methods for the Examination of Water and Wastewater, AWWA, WPCF (19th ed.). Washington, DC, USA: American Public Health Association.
  • Szymanowska-Powałowska, D., Leja, K. 2014. An increasing of the efficiency of microbiological synthesis of 1,3-propanediol from crude glycerol by the concentration of biomass. Electronic Journal of Biotechnology, 17(2): 72–78.
  • Aquino de Souza, E., Rossi, D. M., Záchia Ayub, M. A. Ô. 2014. Bioconversion of residual glycerol from biodiesel synthesis into 1,3-propanediol using immobilized cells of Klebsiella pneumoniae BLh-1. Renewable Energy, 72: 253–257.
  • Wong, C. L., Huang, C. C., Chen, W. M., Chang, J. S. 2011. Converting crude glycerol to 1,3-propandiol using resting and immobilized Klebsiella sp. HE-2 cells. Biochemical Engineering Journal, 58–59(1): 177–183.
  • Yang, X., Kim, D. S., Choi, H. S., Kim, C. K., Thapa, L. P., Park, C., Kim, S. W. 2017. Repeated batch production of 1,3-propanediol from biodiesel derived waste glycerol by Klebsiella pneumoniae. Chemical Engineering Journal, 314: 660–669.
  • Metsoviti, M., Zeng, A. P., Koutinas, A. A., Papanikolaou, S. 2013. Enhanced 1,3-propanediol production by a newly isolated Citrobacter freundii strain cultivated on biodiesel-derived waste glycerol through sterile and non-sterile bioprocesses. Journal of Biotechnology, 163(4): 408–418.
  • Zeng, A. P., Biebl, H., Schlieker, H., Deckwer, W. D. 1993. Pathway analysis of glycerol fermentation by Klebsiella pneumoniae: Regulation of reducing equivalent balance and product formation. Enzyme and Microbial Technology, 15(9): 770–779.
  • Pflugmacher, U., Gottschalk, G. 1994. Development of an immobilized cell reactor for the production of 1,3-propanediol by Citrobacter freundii. Applied Microbiology and Biotechnology, 41(3): 313–316.
  • Zheng, Z. Ming, Guo, N. ni, Hao, J., Cheng, K. K., Sun, Y., Liu, D. Hua. 2009. Scale-up of micro-aerobic 1,3-propanediol production with Klebsiella pneumoniae CGMCC 1.6366. Process Biochemistry, 44(8): 944–948.
  • Chatzifragkou, A., Papanikolaou, S., Dietz, D., Doulgeraki, A. I., Nychas, G. J. E., Zeng, A. P. 2011. Production of 1,3-propanediol by Clostridium butyricum growing on biodiesel-derived crude glycerol through a non-sterilized fermentation process. Applied Microbiology and Biotechnology, 91(1): 101–112.
  • Anand, P., Saxena, R. K. 2012. A comparative study of solvent-assisted pretreatment of biodiesel derived crude glycerol on growth and 1,3-propanediol production from Citrobacter freundii. New Biotechnology, 29(2): 199–205.
There are 31 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Mine Güngörmüşler 0000-0002-0207-405X

Publication Date March 31, 2021
Submission Date December 30, 2020
Published in Issue Year 2021 Volume: 8 Issue: 1

Cite

Vancouver Güngörmüşler M. Production of Value-Added Bioproducts Using a Modified Continuous Biofilm Reactor by Citrobacter Freundii DSM 15979. Hittite J Sci Eng. 2021;8(1):55-62.

Hittite Journal of Science and Engineering is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY NC).