Research Article
BibTex RIS Cite
Year 2023, Volume: 10 Issue: 1, 49 - 56, 31.03.2023
https://doi.org/10.17350/HJSE19030000290

Abstract

References

  • Ran J, Wang D, Wang C, Zhang G, Zhang H. Heavy metal contents, distribution, and prediction in a regional soil–wheat system. Science of the Total Environment 544 (2016) 422–431.
  • Peralta-Videa J.R., Lopez,M.L., Narayan M., Saupe G., Gardea-Torresdey J. The biochemistry of environmental heavy metal uptake by plants: implications for the food chain. International Journl of Biochemistry&Cell Biology. 41, (2009) 1665–1677.
  • Tejera RL, Luis G, González-Weller D, Caballero JM, Gutiérrez AJ, Rubio C, Hardison A. Metals in wheat flour; comparative study and safety control. Nutricion hospitalaria: organo oficial de la Sociedad Espanola de Nutricion Parenteral y Enteral. 28-2 (2013) 506-13. DOI: 10.3305/NH.2013.28.2.6287.
  • Yan A, Wang Y, Tan SN, Mohd Yusof ML, Ghosh S and Chen Z. Phytoremediation: A promising approach for revegetation of heavy metal-polluted land. Frontiers in Plant Science 11:359 (2020) 1-15 doi: 10.3389/fpls.2020.00359.
  • Xiang M, Li Y, Yang J, Lei K, Li Y, Li F, Zheng D, Fang X, Cao Y. Heavy metal contamination risk assessment and correlation analysis of heavy metal contents in soil and crops. Environmental Pollution 278 (2021) 116911. https://doi.org/10.1016/j.envpol.2021.116911.
  • Soós A, Bódi E, Várallyay S, Molnár S, Kovács B. Microwave-assisted sample preparation of Hungarian raw propolis in quartz vessels and element analysis by ICP-OES and ICP-MS for geographical identification. Talanta 233 (2021) 122613. https://doi.org/10.1016/j.talanta.2021.122613.
  • Park YM, Choi JY, Nho EY, Lee CM, Hwang IM, Khan N, Jamila N& Kim KS. Determination of macro and trace elements in canned marine products by inductively coupled plasma—optical emission spectrometry (ICP-OES) and ICP—mass spectrometry (ICP-MS), Analytical Letters, 52 (2019) 1018-1030. DOI:10.1080/00032719.2018.1510938.
  • Oliveiraa AF, Silvaa CS, Bianchic SR, Nogueira ARA. The use of diluted formic acid in sample preparation for macro- and microelements determination in foodstuff samples using ICP OES. Journal of Food Composition and Analysis, 66 (2018) 7-12. https://doi.org/10.1016/j.jfca.2017.11.001.
  • Martins CA, Cerveira C, Scheffler GL, Pozebon D. Metal Determination in tea, wheat, and wheat flour using diluted nitric acid, high-efficiency nebulizer, and axially viewed ICP OES. Food Analytical Methods 8 (2015) 1652–1660. DOI 10.1007/s12161-014-0044-z.
  • Algül I, Kara D. Determination and chemometric evaluation of total aflatoxin, aflatoxin B1, ochratoxin A, and heavy metals content in corn flours from Turkey. Food Chemistry 157 (2014) 70–76. http://dx.doi.org/10.1016/j.foodchem.2014.02.004.
  • Millour S, Noël L, Kadar A, Chekri R, Vastel C, Guérin T. Simultaneous analysis of 21 elements in foodstuffs by ICP-MS after closed-vessel microwave digestion: Method validation. Journal of Food Composition and Analysis 24 (2011) 111–120. doi:10.1016/j.jfca.2010.04.002.
  • Nardi EP, Evangelista FS, Tormen L, Saint´Pierre TD, Curtius AJ, Souza SS, Barbosa F. The use of inductively coupled plasma mass spectrometry (ICP-MS) for the determination of toxic and essential elements in different types of food samples. Food Chemistry 112 (2009) 727–732. doi:10.1016/j.foodchem.2008.06.010.
  • Shokunbi OS, Adepoju OT, Mojapelo PEL, Ramaite IDI, Akinyele IO. Copper, manganese, iron, and zinc contents of Nigerian foods and estimates of adult dietary intakes. Journal of Food Composition and Analysis 82 (2019) 103245. https://doi.org/10.1016/j.jfca.2019.103245.
  • Acar O, Tunçeli A, Türker AR. Comparison of wet and microwave digestion methods for the determination of copper, iron, and zinc in some food Samples by FAAS. Food Analytical Methods 9 (2016) 3201–3208. DOI 10.1007/s12161-016-0516-4.
  • Daşbaşı T, Saçmacı Ş, Ülgen A, Kartal Ş. Determination of some metal ions in various meat and baby food samples by atomic spectrometry. Food Chemistry 197 (2016) 107-113. https://doi.org/10.1016/j.foodchem.2015.10.093.
  • Andrade RMA, Gois JS, Toaldo IM, Batista DB, Luna AS, Borges DLG. Direct determination of trace elements in meat samples via high-resolution graphite furnace Atomic Absorption Spectrometry Food Analytical Methods 10 (2017) 1209–1215. DOI 10.1007/s12161-016-0659-3.
  • Gunduz S, Akman S. Investigation of trace element contents in edible oils sold in Turkey using microemulsion and emulsion procedures by graphite furnace atomic absorption spectrophotometry LWT-Food Science and Technology 64-2 (2015) 1329-1333. https://doi.org/10.1016/j.lwt.2015.07.032.
  • Ajtony Z, Bencs L, Haraszi R, Szigeti J, Szoboszlai N. Study on the simultaneous determination of some essential and toxic trace elements in honey by multi-element graphite furnace atomic absorption spectrometry Talanta. 71-2 (2007) 683-690. https://doi.org/10.1016/j.talanta.2006.05.023.
  • Škrbić B, Čupić S. Toxic and essential elements in soft wheat grain cultivated in Serbia. European Food Research and Technology 221 (2005) 361–366. DOI 10.1007/s00217-005-1179-3.
  • Correia FO, Silva DS, Costa SSL, Silva IKV, Silva DR, Alves JPH, Garcia CAB, Maranhão TA, Passos EA, Araujo RGA. Optimization of microwave digestion and inductively coupled plasma-based methods to characterize cassava, corn, and wheat flours using chemometrics. Microchemical Journal 135 (2017) 190-198. https://doi.org/10.1016/j.microc.2017.09.007.
  • Araujo RGO, Dias FS, Macedo SM, Santos WNL, Ferreira SLC. Method development for the determination of manganese in wheat flour by slurry sampling flame atomic absorption spectrometry. Food Chemistry 101 (2007) 397–400. doi:10.1016/j.foodchem.2005.10.024.
  • Shar GO, Kazi TG, Jakhrani MA, Sahito SR, Memon MA. Determination of seven heavy metals, cadmium, cobalt, chromium, nickel, lead, copper, and manganese in wheat flour samples by flame atomic absorption spectrometry. Journal of Chemical Society Pakistan 24 (2002) 265-268.
  • Wang X, Bi X, Sheng G, Fu J. Chemical composition and sources of PM10 and PM2.5 aerosols in Guangzhou, China. Environmental Monitoring and Assessment (2006) 119: 425–439. DOI: 10.1007/s10661-005-9034-3.
  • FDA Food and Drug Administration, Guidance for Industry: A Food Labeling Guide (14. Appendix F: Calculate the Percent Daily Value for the Appropriate Nutrients) 2013.
  • EC. Commission of the European Communities. Commission Regulation (EC) No. 1881/2006 Regulation of setting maximum levels for certain contaminants in foodstuffs L364-5/L364-24. Off. J. Eur. Union 2006, 364, 5–24.
  • Zwolak A, Sarzyńska M, Szpyrka E, Stawarczyk K. Sources of soil pollution by heavy metals and their accumulation in vegetables: a Review. Water Air& Soil Pollution (2019) 230: 164. https://doi.org/10.1007/s11270-019-4221-y.
  • Rai PK, Lee SS, Zhang M, Tsang YF, Kim KH. Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environment International 125 (2019) 365–385. https://doi.org/10.1016/j.envint.2019.01.067.
  • Safari Y, Delavar MA, Zhang C, Boroujeni IE, Owliaie HR. The influences of selected soil properties on Pb availability and its transfer to wheat (Triticum aestivum L.) in polluted calcareous soil. Environmental Monitoring and Assessment 187 (2015) 773. DOI 10.1007/s10661-015-5001-9.
  • Boussen S, Soubrand M, Bril H, Ouerfelli K, Abdeljaouad S. Transfer of lead, zinc, and cadmium from mine tailings to wheat (Triticum aestivum) in carbonated Mediterranean (Northern Tunisia) soils. Geoderma 192 (2013) 227–236. http://dx.doi.org/10.1016/j.geoderma.2012.08.029.
  • Aslam M, Aslam A, Sheraz M, Ali B, Ulhassan Z, Najeeb U, Zhou W, Gill RA. Lead toxicity in cereals: Mechanistic insight into toxicity, mode of action, and management. Frontiers in Plant Science 11 (2021) 587785. DOI: 10.3389/fpls.2020.587785.
  • Kiran BR, Prasad MNV. Responses of ricinus communis L. (castor bean, phytoremediation crop) seedlings to lead (Pb) toxicity in hydroponics. Selcuk Journal of Agriculture and Food Science 31 (2017) 73–80. doi: 10.15316/SJAFS.2017.9.
  • Guo G, Lei M, Wang Y, Song B, Yang J. Accumulation of As, Cd, and Pb in sixteen wheat cultivars grown in contaminated soils and associated health risk assessment. The International Journal of Environmental Research and Public Health 15 (2018) 2601. doi:10.3390/ijerph15112601.
  • Yang J, Chen T, Lei M, Zhou X, Huang Q, Ma C, Gu R, Guo G. New isotopic evidence of lead contamination in wheat grain from atmospheric fallout. Environmental Science and Pollution Research 22 (2015) 14710–14716. DOI 10.1007/s11356-015-4601-9.
  • https://www.epa.gov/criteria-air-pollutants.
  • Tyagi S, Chaudhary M, Ambedkar AK, Sharma K, Gautam YK, Singh BP. Metal oxide nanomaterial-based sensors for monitoring environmental NO2 and its impact on the plant ecosystem: a review. Sensors and Diagnostics 1 (2022) 106-119 doi.org/10.1039/D1SD00034A.
  • Sheng Q, Zhu Z. Effects of nitrogen dioxide on biochemical responses in 41 garden plants. Plants 8 (2019) 45. doi:10.3390/plants8020045.
  • Orduna RB, McBride JR, Shiraishi K, Elustondo D, Lasheras E, Santamaría JM. Science of the Total Environment. 490 (2014) 205-212. https://doi.org/10.1016/j.scitotenv.2014.04.119.
  • Schreck E, Dappe V, Sarret G, Sobanska S, Nowak D, Nowak J, Stefaniak EA, Magnin V, Ranieri V, Dumat C. Foliar or root exposures to smelter particles: Consequences for lead compartmentalization and speciation in plant leaves. Science of the Total Environment 476 (2014) 667-676. DOI:10.1016/j.scitotenv.2013.12.089.

Monitoring of Lead and Some Heavy Metals in Wheat Flour of Corum Province, Turkey: An Air Quality Comparison

Year 2023, Volume: 10 Issue: 1, 49 - 56, 31.03.2023
https://doi.org/10.17350/HJSE19030000290

Abstract

Food security is a priority issue for sustainable global development. Metal uptake by plants could have a significant impact on crop quality in areas of rapid industrialization with high fallout of airborne particles. In this study, concentrations of some heavy metals (copper, Cu; zinc, Zn; and lead, Pb) in flour samples supplied in Çorum, defined as one of the “New Industry Focus”, were investigated using inductively coupled plasma-optical emission spectrometry (ICP-OES) to determine the heavy metal contamination. The results showed that the concentration of Pb in all samples examined exceeded the maximum permissible limit. To monitor the increase in Pb concentration and its relationship with air pollution, a two-year laboratory experiment was conducted. It was found that the increase in Pb concentration of about 47% and 77% for two flour samples was consistent with the increase in annual average particulate matter with diameter 10 micrometers PM10 concentrations (55% and 82%) obtained from two stations.

References

  • Ran J, Wang D, Wang C, Zhang G, Zhang H. Heavy metal contents, distribution, and prediction in a regional soil–wheat system. Science of the Total Environment 544 (2016) 422–431.
  • Peralta-Videa J.R., Lopez,M.L., Narayan M., Saupe G., Gardea-Torresdey J. The biochemistry of environmental heavy metal uptake by plants: implications for the food chain. International Journl of Biochemistry&Cell Biology. 41, (2009) 1665–1677.
  • Tejera RL, Luis G, González-Weller D, Caballero JM, Gutiérrez AJ, Rubio C, Hardison A. Metals in wheat flour; comparative study and safety control. Nutricion hospitalaria: organo oficial de la Sociedad Espanola de Nutricion Parenteral y Enteral. 28-2 (2013) 506-13. DOI: 10.3305/NH.2013.28.2.6287.
  • Yan A, Wang Y, Tan SN, Mohd Yusof ML, Ghosh S and Chen Z. Phytoremediation: A promising approach for revegetation of heavy metal-polluted land. Frontiers in Plant Science 11:359 (2020) 1-15 doi: 10.3389/fpls.2020.00359.
  • Xiang M, Li Y, Yang J, Lei K, Li Y, Li F, Zheng D, Fang X, Cao Y. Heavy metal contamination risk assessment and correlation analysis of heavy metal contents in soil and crops. Environmental Pollution 278 (2021) 116911. https://doi.org/10.1016/j.envpol.2021.116911.
  • Soós A, Bódi E, Várallyay S, Molnár S, Kovács B. Microwave-assisted sample preparation of Hungarian raw propolis in quartz vessels and element analysis by ICP-OES and ICP-MS for geographical identification. Talanta 233 (2021) 122613. https://doi.org/10.1016/j.talanta.2021.122613.
  • Park YM, Choi JY, Nho EY, Lee CM, Hwang IM, Khan N, Jamila N& Kim KS. Determination of macro and trace elements in canned marine products by inductively coupled plasma—optical emission spectrometry (ICP-OES) and ICP—mass spectrometry (ICP-MS), Analytical Letters, 52 (2019) 1018-1030. DOI:10.1080/00032719.2018.1510938.
  • Oliveiraa AF, Silvaa CS, Bianchic SR, Nogueira ARA. The use of diluted formic acid in sample preparation for macro- and microelements determination in foodstuff samples using ICP OES. Journal of Food Composition and Analysis, 66 (2018) 7-12. https://doi.org/10.1016/j.jfca.2017.11.001.
  • Martins CA, Cerveira C, Scheffler GL, Pozebon D. Metal Determination in tea, wheat, and wheat flour using diluted nitric acid, high-efficiency nebulizer, and axially viewed ICP OES. Food Analytical Methods 8 (2015) 1652–1660. DOI 10.1007/s12161-014-0044-z.
  • Algül I, Kara D. Determination and chemometric evaluation of total aflatoxin, aflatoxin B1, ochratoxin A, and heavy metals content in corn flours from Turkey. Food Chemistry 157 (2014) 70–76. http://dx.doi.org/10.1016/j.foodchem.2014.02.004.
  • Millour S, Noël L, Kadar A, Chekri R, Vastel C, Guérin T. Simultaneous analysis of 21 elements in foodstuffs by ICP-MS after closed-vessel microwave digestion: Method validation. Journal of Food Composition and Analysis 24 (2011) 111–120. doi:10.1016/j.jfca.2010.04.002.
  • Nardi EP, Evangelista FS, Tormen L, Saint´Pierre TD, Curtius AJ, Souza SS, Barbosa F. The use of inductively coupled plasma mass spectrometry (ICP-MS) for the determination of toxic and essential elements in different types of food samples. Food Chemistry 112 (2009) 727–732. doi:10.1016/j.foodchem.2008.06.010.
  • Shokunbi OS, Adepoju OT, Mojapelo PEL, Ramaite IDI, Akinyele IO. Copper, manganese, iron, and zinc contents of Nigerian foods and estimates of adult dietary intakes. Journal of Food Composition and Analysis 82 (2019) 103245. https://doi.org/10.1016/j.jfca.2019.103245.
  • Acar O, Tunçeli A, Türker AR. Comparison of wet and microwave digestion methods for the determination of copper, iron, and zinc in some food Samples by FAAS. Food Analytical Methods 9 (2016) 3201–3208. DOI 10.1007/s12161-016-0516-4.
  • Daşbaşı T, Saçmacı Ş, Ülgen A, Kartal Ş. Determination of some metal ions in various meat and baby food samples by atomic spectrometry. Food Chemistry 197 (2016) 107-113. https://doi.org/10.1016/j.foodchem.2015.10.093.
  • Andrade RMA, Gois JS, Toaldo IM, Batista DB, Luna AS, Borges DLG. Direct determination of trace elements in meat samples via high-resolution graphite furnace Atomic Absorption Spectrometry Food Analytical Methods 10 (2017) 1209–1215. DOI 10.1007/s12161-016-0659-3.
  • Gunduz S, Akman S. Investigation of trace element contents in edible oils sold in Turkey using microemulsion and emulsion procedures by graphite furnace atomic absorption spectrophotometry LWT-Food Science and Technology 64-2 (2015) 1329-1333. https://doi.org/10.1016/j.lwt.2015.07.032.
  • Ajtony Z, Bencs L, Haraszi R, Szigeti J, Szoboszlai N. Study on the simultaneous determination of some essential and toxic trace elements in honey by multi-element graphite furnace atomic absorption spectrometry Talanta. 71-2 (2007) 683-690. https://doi.org/10.1016/j.talanta.2006.05.023.
  • Škrbić B, Čupić S. Toxic and essential elements in soft wheat grain cultivated in Serbia. European Food Research and Technology 221 (2005) 361–366. DOI 10.1007/s00217-005-1179-3.
  • Correia FO, Silva DS, Costa SSL, Silva IKV, Silva DR, Alves JPH, Garcia CAB, Maranhão TA, Passos EA, Araujo RGA. Optimization of microwave digestion and inductively coupled plasma-based methods to characterize cassava, corn, and wheat flours using chemometrics. Microchemical Journal 135 (2017) 190-198. https://doi.org/10.1016/j.microc.2017.09.007.
  • Araujo RGO, Dias FS, Macedo SM, Santos WNL, Ferreira SLC. Method development for the determination of manganese in wheat flour by slurry sampling flame atomic absorption spectrometry. Food Chemistry 101 (2007) 397–400. doi:10.1016/j.foodchem.2005.10.024.
  • Shar GO, Kazi TG, Jakhrani MA, Sahito SR, Memon MA. Determination of seven heavy metals, cadmium, cobalt, chromium, nickel, lead, copper, and manganese in wheat flour samples by flame atomic absorption spectrometry. Journal of Chemical Society Pakistan 24 (2002) 265-268.
  • Wang X, Bi X, Sheng G, Fu J. Chemical composition and sources of PM10 and PM2.5 aerosols in Guangzhou, China. Environmental Monitoring and Assessment (2006) 119: 425–439. DOI: 10.1007/s10661-005-9034-3.
  • FDA Food and Drug Administration, Guidance for Industry: A Food Labeling Guide (14. Appendix F: Calculate the Percent Daily Value for the Appropriate Nutrients) 2013.
  • EC. Commission of the European Communities. Commission Regulation (EC) No. 1881/2006 Regulation of setting maximum levels for certain contaminants in foodstuffs L364-5/L364-24. Off. J. Eur. Union 2006, 364, 5–24.
  • Zwolak A, Sarzyńska M, Szpyrka E, Stawarczyk K. Sources of soil pollution by heavy metals and their accumulation in vegetables: a Review. Water Air& Soil Pollution (2019) 230: 164. https://doi.org/10.1007/s11270-019-4221-y.
  • Rai PK, Lee SS, Zhang M, Tsang YF, Kim KH. Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environment International 125 (2019) 365–385. https://doi.org/10.1016/j.envint.2019.01.067.
  • Safari Y, Delavar MA, Zhang C, Boroujeni IE, Owliaie HR. The influences of selected soil properties on Pb availability and its transfer to wheat (Triticum aestivum L.) in polluted calcareous soil. Environmental Monitoring and Assessment 187 (2015) 773. DOI 10.1007/s10661-015-5001-9.
  • Boussen S, Soubrand M, Bril H, Ouerfelli K, Abdeljaouad S. Transfer of lead, zinc, and cadmium from mine tailings to wheat (Triticum aestivum) in carbonated Mediterranean (Northern Tunisia) soils. Geoderma 192 (2013) 227–236. http://dx.doi.org/10.1016/j.geoderma.2012.08.029.
  • Aslam M, Aslam A, Sheraz M, Ali B, Ulhassan Z, Najeeb U, Zhou W, Gill RA. Lead toxicity in cereals: Mechanistic insight into toxicity, mode of action, and management. Frontiers in Plant Science 11 (2021) 587785. DOI: 10.3389/fpls.2020.587785.
  • Kiran BR, Prasad MNV. Responses of ricinus communis L. (castor bean, phytoremediation crop) seedlings to lead (Pb) toxicity in hydroponics. Selcuk Journal of Agriculture and Food Science 31 (2017) 73–80. doi: 10.15316/SJAFS.2017.9.
  • Guo G, Lei M, Wang Y, Song B, Yang J. Accumulation of As, Cd, and Pb in sixteen wheat cultivars grown in contaminated soils and associated health risk assessment. The International Journal of Environmental Research and Public Health 15 (2018) 2601. doi:10.3390/ijerph15112601.
  • Yang J, Chen T, Lei M, Zhou X, Huang Q, Ma C, Gu R, Guo G. New isotopic evidence of lead contamination in wheat grain from atmospheric fallout. Environmental Science and Pollution Research 22 (2015) 14710–14716. DOI 10.1007/s11356-015-4601-9.
  • https://www.epa.gov/criteria-air-pollutants.
  • Tyagi S, Chaudhary M, Ambedkar AK, Sharma K, Gautam YK, Singh BP. Metal oxide nanomaterial-based sensors for monitoring environmental NO2 and its impact on the plant ecosystem: a review. Sensors and Diagnostics 1 (2022) 106-119 doi.org/10.1039/D1SD00034A.
  • Sheng Q, Zhu Z. Effects of nitrogen dioxide on biochemical responses in 41 garden plants. Plants 8 (2019) 45. doi:10.3390/plants8020045.
  • Orduna RB, McBride JR, Shiraishi K, Elustondo D, Lasheras E, Santamaría JM. Science of the Total Environment. 490 (2014) 205-212. https://doi.org/10.1016/j.scitotenv.2014.04.119.
  • Schreck E, Dappe V, Sarret G, Sobanska S, Nowak D, Nowak J, Stefaniak EA, Magnin V, Ranieri V, Dumat C. Foliar or root exposures to smelter particles: Consequences for lead compartmentalization and speciation in plant leaves. Science of the Total Environment 476 (2014) 667-676. DOI:10.1016/j.scitotenv.2013.12.089.
There are 38 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Esra Ölmez 0000-0002-2778-4250

Ebru Gökmeşe 0000-0002-5807-3494

Ümit Ergun 0000-0002-1830-1181

Faruk Gokmeşe 0000-0002-0275-3941

Publication Date March 31, 2023
Submission Date November 19, 2022
Published in Issue Year 2023 Volume: 10 Issue: 1

Cite

Vancouver Ölmez E, Gökmeşe E, Ergun Ü, Gokmeşe F. Monitoring of Lead and Some Heavy Metals in Wheat Flour of Corum Province, Turkey: An Air Quality Comparison. Hittite J Sci Eng. 2023;10(1):49-56.

Hittite Journal of Science and Engineering is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY NC).