Year 2024,
Volume: 11 Issue: 1, 41 - 47, 31.03.2024
Halil Yılmaz
,
Bülent Alkan
,
Hasan Feyzi Budak
Project Number
BAP-20-TBMY-4901-02
References
- Matricardi LR, Downing J. Manganese and manganese alloys. Kirk‐Othmer Encyclopedia of Chemical Technology. 2000.
- Sully A, Senderoff S. Manganese, Metallurgy of the Rarer Metals, Number 3. J Electrochem Soc. 1955;102(10):255Ca.
- Verhoeven JD. Steel metallurgy for the non-metallurgist: ASM International; 2007. 220 p.
- Martha S, Markovsky B, Grinblat J, Gofer Y, Haik O, Zinigrad E, et al. LiMnPO4 as an advanced cathode material for rechargeable lithium batteries. J Electrochem Soc. 2009;156(7):A541.
- Meaden GT. The general physical properties of manganese metal. Metallurgical Reviews. 1968;13(1):97-114.
- Stelmashenko N, Walls M, Brown L, Milman YV. Microindentations on W and Mo oriented single crystals: an STM study. Acta Mater. 1993;41(10):2855-65.
- Zhu T, Bushby A, Dunstan D. Materials mechanical size effects: a review. Mater Sci Technol. 2008;23(4):193-209.
- Uchic MD, Dimiduk DM, Florando JN, Nix WD. Sample dimensions influence strength and crystal plasticity. Science. 2004;305(5686):986-9.
- Greer JR, Oliver WC, Nix WD. Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater. 2005;53(6):1821-30.
- Kim J-Y, Greer JR. Tensile and compressive behavior of gold and molybdenum single crystals at the nano-scale. Acta Mater. 2009;57(17):5245-53.
- Kiener D, Grosinger W, Dehm G, Pippan R. A further step towards an understanding of size-dependent crystal plasticity: In situ tension experiments of miniaturized single-crystal copper samples. Acta Mater. 2008;56(3):580-92.
- Chen C, Pei Y, De Hosson JTM. Effects of size on the mechanical response of metallic glasses investigated through in situ TEM bending and compression experiments. Acta Mater. 2010;58(1):189-200.
- Iqbal F, Ast J, Göken M, Durst K. In situ micro-cantilever tests to study fracture properties of NiAl single crystals. Acta Mater. 2012;60(3):1193-200.
- Dimiduk D, Uchic M, Parthasarathy T. Size-affected single-slip behavior of pure nickel microcrystals. Acta Mater. 2005;53(15):4065-77.
- Frick C, Clark B, Orso S, Schneider A, Arzt E. Size effect on strength and strain hardening of small-scale [111] nickel compression pillars. Mater Sci Eng A. 2008;489(1):319-29.
- Ng K, Ngan A. Stochastic nature of plasticity of aluminum micro-pillars. Acta Mater. 2008;56(8):1712-20.
- Kiener D, Motz C, Dehm G. Micro-compression testing: A critical discussion of experimental constraints. Mater Sci Eng A. 2009;505(1):79-87.
- Kiener D, Motz C, Dehm G. Dislocation-induced crystal rotations in micro-compressed single crystal copper columns. J Mater Sci. 2008;43(7):2503-6.
- Schneider AS, Kaufmann D, Clark BG, Frick CP, Gruber PA, Mönig R, et al. Correlation between critical temperature and strength of Small-Scale bcc pillars. Phys Rev Lett. 2009;103(10):105501.
- Rogne BRS, Thaulow C. Effect of crystal orientation on the strengthening of iron micro pillars. Mater Sci Eng A. 2015;621:133-42.
- Kaufmann D, Mönig R, Volkert C, Kraft O. Size dependent mechanical behaviour of tantalum. Int J Plast. 2011;27(3):470-8.
- Kim J-Y, Jang D, Greer JR. Tensile and compressive behavior of tungsten, molybdenum, tantalum and niobium at the nanoscale. Acta Mater. 2010;58(7):2355-63.
- Yilmaz H, Williams CJ, Risan J, Derby B. The size dependent strength of Fe, Nb and V micropillars at room and low temperature. Mater. 2019;7:100424.
- Shan Z. In situ TEM investigation of the mechanical behavior of micronanoscaled metal pillars. JOM. 2012;64(10):1229-34.
- Prasad KE, Rajesh K, Ramamurty U. Micropillar and macropillar compression responses of magnesium single crystals oriented for single slip or extension twinning. Acta Mater. 2014;65:316-25.
- Mridha S, Arora HS, Lefebvre J, Bhowmick S, Mukherjee S. High temperature in situ compression of thermoplastically formed nano-scale metallic glass. JOM. 2017;69(1):39-44.
- Shan Z, Li J, Cheng Y, Minor A, Asif SS, Warren O, et al. Plastic flow and failure resistance of metallic glass: Insight from in situ compression of nanopillars. Phys Rev B. 2008;77(15):155419.
- Dubach A, Raghavan R, Löffler JF, Michler J, Ramamurty U. Micropillar compression studies on a bulk metallic glass in different structural states. Scripta Mater. 2009;60(7):567-70.
- Cheng GM, Jian WW, Xu WZ, Yuan H, Millett PC, Zhu YT. Grain size effect on deformation mechanisms of nanocrystalline bcc metals. Mater Res Lett. 2012;1(1):26-31.
- Dou R, Derby B. A universal scaling law for the strength of metal micropillars and nanowires. Scripta Mater. 2009;61(5):524-7.
- Rogne B, Thaulow C. Strengthening mechanisms of iron micropillars. Philos Mag. 2015;95(16-18):1814-28.
- Huang R, Li Q-J, Wang Z-J, Huang L, Li J, Ma E, et al. Flow stress in submicron BCC iron single crystals: sample-size-dependent strain-rate sensitivity and rate-dependent size strengthening. Mater Res Lett. 2015;3(3):121-7.
- Han SM, Feng G, Jung JY, Jung HJ, Groves JR, Nix WD, et al. Critical-temperature/Peierls-stress dependent size effects in body centered cubic nanopillars. Appl Phys Lett. 2013;102(4):041910.
- Lee S-W, Cheng Y, Ryu I, Greer J. Cold-temperature deformation of nano-sized tungsten and niobium as revealed by in-situ nano-mechanical experiments. Science China Technological Sciences. 2014;57(4):652-62.
- Seeger A. Peierls barriers, kinks, and flow stress: Recent progress: Dedicated to Professor Dr. Haël Mughrabi on the occasion of his 65th birthday. Z Metallk. 2002;93(8):760-77.
- Christian J. Some surprising features of the plastic deformation of body-centered cubic metals and alloys. Metall Trans A. 1983;14(7):1237-56.
- Kishida K, Suzuki H, Okutani M, Inui H. Room-temperature plastic deformation of single crystals of α-manganese-hard and brittle metallic element. Int J Plast. 2023;160:103510.
- Volkert CA, Lilleodden ET. Size effects in the deformation of sub-micron Au columns. Philos Mag. 2006;86(33-35):5567-79.
- Schneider A, Clark B, Frick C, Gruber P, Arzt E. Effect of orientation and loading rate on compression behavior of small-scale Mo pillars. Mater Sci Eng A. 2009;508(1):241-6.
- Torrents Abad O, Wheeler JM, Michler J, Schneider AS, Arzt E. Temperature-dependent size effects on the strength of Ta and W micropillars. Acta Mater. 2016;103:483-94.
- Greer JR, Nix WD. Nanoscale gold pillars strengthened through dislocation starvation. Phys Rev B. 2006;73(24):245410.
- Greer JR, De Hosson JTM. Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect. Prog Mater Sci. 2011;56(6):654-724.
- Kim J-Y, Greer JR. Size-dependent mechanical properties of molybdenum nanopillars. Appl Phys Lett. 2008;93(10):101916.
- Yilmaz H. Mechanical properties of body-centred cubic nanopillars [PhD Thesis]: University of Manchester (Manchester, UK); 2018.
- Yilmaz H, Williams CJ, Derby B. Size effects on strength and plasticity of ferrite and austenite pillars in a duplex stainless steel. Mater Sci Eng A. 2020;793:139883.
Size Dependent Compressive Strength of FIB Machined Single Crystal Manganese Pillars
Year 2024,
Volume: 11 Issue: 1, 41 - 47, 31.03.2024
Halil Yılmaz
,
Bülent Alkan
,
Hasan Feyzi Budak
Abstract
The deformation behavior of single crystals of manganese pillars generated by focused ion beam (FIB), with diameters ranging from ~1 m to ~4.5 m, has been studied as a function of specimen size using micropillar compression at ambient temperature. The manganese pillars were machined from randomly chosen larger grains of polycrystalline metal. At ambient temperature, single crystals of manganese display chaotic slip planes emerging on the sample surface and brittle plastic deformation when the sample size is decreased to the micrometer scale. The manganese pillars reached very high flow stresses in the range of 4-5.6 GPa. The stress-strain curves of all tested manganese pillars demonstrated significant work hardening and smooth flow behavior, with strains up to 8-10%. After 10% strain, however, the flow stresses remained constant with no work hardening. As previously reported, the manganese pillars with undetermined orientation demonstrated a less pronounced size effect (-0.14) by the size effect exponent of BCC pillars.
Supporting Institution
Mus Alparslan University Scientific Research Project (BAP)
Project Number
BAP-20-TBMY-4901-02
Thanks
This work was supported by Mus Alparslan University Scientific Research Project (BAP) of Mus Alparslan University under a project number of BAP-20-TBMY-4901-02. We would like to thank the Eastern Anatolia High Technology Application and Research Center (DAYTAM) for access to the SEM and FIB.
References
- Matricardi LR, Downing J. Manganese and manganese alloys. Kirk‐Othmer Encyclopedia of Chemical Technology. 2000.
- Sully A, Senderoff S. Manganese, Metallurgy of the Rarer Metals, Number 3. J Electrochem Soc. 1955;102(10):255Ca.
- Verhoeven JD. Steel metallurgy for the non-metallurgist: ASM International; 2007. 220 p.
- Martha S, Markovsky B, Grinblat J, Gofer Y, Haik O, Zinigrad E, et al. LiMnPO4 as an advanced cathode material for rechargeable lithium batteries. J Electrochem Soc. 2009;156(7):A541.
- Meaden GT. The general physical properties of manganese metal. Metallurgical Reviews. 1968;13(1):97-114.
- Stelmashenko N, Walls M, Brown L, Milman YV. Microindentations on W and Mo oriented single crystals: an STM study. Acta Mater. 1993;41(10):2855-65.
- Zhu T, Bushby A, Dunstan D. Materials mechanical size effects: a review. Mater Sci Technol. 2008;23(4):193-209.
- Uchic MD, Dimiduk DM, Florando JN, Nix WD. Sample dimensions influence strength and crystal plasticity. Science. 2004;305(5686):986-9.
- Greer JR, Oliver WC, Nix WD. Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater. 2005;53(6):1821-30.
- Kim J-Y, Greer JR. Tensile and compressive behavior of gold and molybdenum single crystals at the nano-scale. Acta Mater. 2009;57(17):5245-53.
- Kiener D, Grosinger W, Dehm G, Pippan R. A further step towards an understanding of size-dependent crystal plasticity: In situ tension experiments of miniaturized single-crystal copper samples. Acta Mater. 2008;56(3):580-92.
- Chen C, Pei Y, De Hosson JTM. Effects of size on the mechanical response of metallic glasses investigated through in situ TEM bending and compression experiments. Acta Mater. 2010;58(1):189-200.
- Iqbal F, Ast J, Göken M, Durst K. In situ micro-cantilever tests to study fracture properties of NiAl single crystals. Acta Mater. 2012;60(3):1193-200.
- Dimiduk D, Uchic M, Parthasarathy T. Size-affected single-slip behavior of pure nickel microcrystals. Acta Mater. 2005;53(15):4065-77.
- Frick C, Clark B, Orso S, Schneider A, Arzt E. Size effect on strength and strain hardening of small-scale [111] nickel compression pillars. Mater Sci Eng A. 2008;489(1):319-29.
- Ng K, Ngan A. Stochastic nature of plasticity of aluminum micro-pillars. Acta Mater. 2008;56(8):1712-20.
- Kiener D, Motz C, Dehm G. Micro-compression testing: A critical discussion of experimental constraints. Mater Sci Eng A. 2009;505(1):79-87.
- Kiener D, Motz C, Dehm G. Dislocation-induced crystal rotations in micro-compressed single crystal copper columns. J Mater Sci. 2008;43(7):2503-6.
- Schneider AS, Kaufmann D, Clark BG, Frick CP, Gruber PA, Mönig R, et al. Correlation between critical temperature and strength of Small-Scale bcc pillars. Phys Rev Lett. 2009;103(10):105501.
- Rogne BRS, Thaulow C. Effect of crystal orientation on the strengthening of iron micro pillars. Mater Sci Eng A. 2015;621:133-42.
- Kaufmann D, Mönig R, Volkert C, Kraft O. Size dependent mechanical behaviour of tantalum. Int J Plast. 2011;27(3):470-8.
- Kim J-Y, Jang D, Greer JR. Tensile and compressive behavior of tungsten, molybdenum, tantalum and niobium at the nanoscale. Acta Mater. 2010;58(7):2355-63.
- Yilmaz H, Williams CJ, Risan J, Derby B. The size dependent strength of Fe, Nb and V micropillars at room and low temperature. Mater. 2019;7:100424.
- Shan Z. In situ TEM investigation of the mechanical behavior of micronanoscaled metal pillars. JOM. 2012;64(10):1229-34.
- Prasad KE, Rajesh K, Ramamurty U. Micropillar and macropillar compression responses of magnesium single crystals oriented for single slip or extension twinning. Acta Mater. 2014;65:316-25.
- Mridha S, Arora HS, Lefebvre J, Bhowmick S, Mukherjee S. High temperature in situ compression of thermoplastically formed nano-scale metallic glass. JOM. 2017;69(1):39-44.
- Shan Z, Li J, Cheng Y, Minor A, Asif SS, Warren O, et al. Plastic flow and failure resistance of metallic glass: Insight from in situ compression of nanopillars. Phys Rev B. 2008;77(15):155419.
- Dubach A, Raghavan R, Löffler JF, Michler J, Ramamurty U. Micropillar compression studies on a bulk metallic glass in different structural states. Scripta Mater. 2009;60(7):567-70.
- Cheng GM, Jian WW, Xu WZ, Yuan H, Millett PC, Zhu YT. Grain size effect on deformation mechanisms of nanocrystalline bcc metals. Mater Res Lett. 2012;1(1):26-31.
- Dou R, Derby B. A universal scaling law for the strength of metal micropillars and nanowires. Scripta Mater. 2009;61(5):524-7.
- Rogne B, Thaulow C. Strengthening mechanisms of iron micropillars. Philos Mag. 2015;95(16-18):1814-28.
- Huang R, Li Q-J, Wang Z-J, Huang L, Li J, Ma E, et al. Flow stress in submicron BCC iron single crystals: sample-size-dependent strain-rate sensitivity and rate-dependent size strengthening. Mater Res Lett. 2015;3(3):121-7.
- Han SM, Feng G, Jung JY, Jung HJ, Groves JR, Nix WD, et al. Critical-temperature/Peierls-stress dependent size effects in body centered cubic nanopillars. Appl Phys Lett. 2013;102(4):041910.
- Lee S-W, Cheng Y, Ryu I, Greer J. Cold-temperature deformation of nano-sized tungsten and niobium as revealed by in-situ nano-mechanical experiments. Science China Technological Sciences. 2014;57(4):652-62.
- Seeger A. Peierls barriers, kinks, and flow stress: Recent progress: Dedicated to Professor Dr. Haël Mughrabi on the occasion of his 65th birthday. Z Metallk. 2002;93(8):760-77.
- Christian J. Some surprising features of the plastic deformation of body-centered cubic metals and alloys. Metall Trans A. 1983;14(7):1237-56.
- Kishida K, Suzuki H, Okutani M, Inui H. Room-temperature plastic deformation of single crystals of α-manganese-hard and brittle metallic element. Int J Plast. 2023;160:103510.
- Volkert CA, Lilleodden ET. Size effects in the deformation of sub-micron Au columns. Philos Mag. 2006;86(33-35):5567-79.
- Schneider A, Clark B, Frick C, Gruber P, Arzt E. Effect of orientation and loading rate on compression behavior of small-scale Mo pillars. Mater Sci Eng A. 2009;508(1):241-6.
- Torrents Abad O, Wheeler JM, Michler J, Schneider AS, Arzt E. Temperature-dependent size effects on the strength of Ta and W micropillars. Acta Mater. 2016;103:483-94.
- Greer JR, Nix WD. Nanoscale gold pillars strengthened through dislocation starvation. Phys Rev B. 2006;73(24):245410.
- Greer JR, De Hosson JTM. Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect. Prog Mater Sci. 2011;56(6):654-724.
- Kim J-Y, Greer JR. Size-dependent mechanical properties of molybdenum nanopillars. Appl Phys Lett. 2008;93(10):101916.
- Yilmaz H. Mechanical properties of body-centred cubic nanopillars [PhD Thesis]: University of Manchester (Manchester, UK); 2018.
- Yilmaz H, Williams CJ, Derby B. Size effects on strength and plasticity of ferrite and austenite pillars in a duplex stainless steel. Mater Sci Eng A. 2020;793:139883.