Research Article
BibTex RIS Cite

Investigation of Barrier Effectiveness and Comfort Properties of Biodegradable PLA Nonwoven Fabrics Coated with Unmodified Lignin/Water-Borne Polyurethane Composite Coatings

Year 2024, Volume: 11 Issue: 2, 77 - 88, 30.06.2024
https://doi.org/10.17350/HJSE19030000334

Abstract

In this study, the main aim is to prepare unmodified lignin/water-based polyurethane (WPU) composite coatings with varying lignin concentrations and apply them to polylactic acid (PLA) spunlace nonwoven fabrics (PNFs). The effects of lignin concentrations were investigated in terms of color values, hydrophobicity, air permeability, and antibacterial properties of PNFs. The analysis of chemical groups in the structures of lignin/WPU composite films after curing was performed using Fourier Transform-Infrared (FTIR) spectroscopy, and their thermal properties were analyzed by Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA). The coatings applied to the fabrics were examined by scanning electron microscopy (SEM) through surface images. The fabric coated with the X4 formulation, containing 4% concentration of lignin, displayed the highest water contact angle recorded at 93.6º. As the lignin concentration increased, the air permeability of the fabrics decreased. Regarding color measurements, the PNF sample coated with the X4 formulation showed the highest K/S value of 7.45. In antibacterial activity tests, no inactivation was observed against E.coli bacteria. However, inhibition zone measurements against S. aureus bacteria were 12±1.41 mm and 16.05±0.7 mm on fabrics coated with X3 and X4 formulations having lignin concentration 2% and 4%, respectively. The results indicated that an increase in lignin concentration effectively contributed to the inactivation against S. aureus bacteria. In this respect, this study represents the potential usability of unmodified lignin/WPU coatings providing barrier and comfort properties on biodegradable PNFs.

Ethical Statement

The author declares that there is no conflicts of interest concerning the content of this article.

Supporting Institution

The Scientific and Technological Research Council of Türkiye (TUBITAK)

Project Number

122M737

Thanks

The authors would like to express their gratitude to The Scientific and Technological Research Council of Türkiye (TUBITAK) for their financial support (project number 122M737).

References

  • 1. Carfagna C, Persico P. Functional Textiles Based on Polymer Composites. Macromol Symp. 2006 Dec 7;245–246(1):355–62.
  • 2. Wollina U, Heide M, Müller-Litz W, Obenauf D, Ash J. Functional Textiles in Prevention of Chronic Wounds, Wound Healing and Tissue Engineering. In: Textiles and the Skin. Basel: Karger; 2003. p. 82–97.
  • 3. Gupta M, Sheikh J, Annu, Singh A. An eco-friendly route to develop cellulose-based multifunctional finished linen fabric using ZnO NPs and CS network. J Ind Eng Chem. 2021;97:383–9.
  • 4. Muzaffar S, Abbas M, Siddiqua UH, Arshad M, Tufail A, Ahsan M, et al. Enhanced mechanical, UV protection and antimicrobial properties of cotton fabric employing nanochitosan and polyurethane based finishing. J Mater Res Technol. 2021;11:946–56.
  • 5. Deng C, Seidi F, Yong Q, Jin X, Li C, Zhang X, et al. Antiviral/antibacterial biodegradable cellulose nonwovens as environmentally friendly and bioprotective materials with potential to minimize microplastic pollution. J Hazard Mater. 2022 Feb;424:127391.
  • 6. Zhang Y, Li TT, Shiu BC, Sun F, Ren HT, Zhang X, et al. Eco-friendly versatile protective polyurethane/triclosan coated polylactic acid nonwovens for medical covers application. J Clean Prod. 2021;282:124455.
  • 7. Pan LS, Yang Q, Xu N, Pang SJ, Wang SF. Preparation and characterization of biodegradable polylactic acid/polypropylene spun-bonded nonwoven fabric slices. Int Polym Process. 2018;33(5):634–41.
  • 8. Chen T, Guo J, Xu H, Zhang J, Hu N, Liu H. One-step fabrication of biodegradable superhydrophobic PLA fabric for continuous oil/water separation. Appl Surf Sci. 2022 Feb;576:151766.
  • 9. Raman A, Sankar A, Abhirami SD, Anilkumar A, Saritha A. Insights into the Sustainable Development of Lignin-Based Textiles for Functional Applications. Macromol Mater Eng. 2022;307(8):1–18.
  • 10. Holme I. Innovative technologies for high performance textiles. Color Technol. 2007;123(2):59–73.
  • 11. Morales-Jiménez M, Gouveia L, Yañez-Fernandez J, Castro-Muñoz J, Barragan-Huerta BE. Microalgae- Based Biopolymer as a Potential Bioactive Film. Coatings. 2020;10:120.
  • 12. Dixit A, Sabnis A, Shetty A. Antimicrobial Edible Films and Coatings based on N,O-Carboxymethyl Chitosan incorporated with Ferula Asafoetida (Hing) and Adhatoda Vasica (Adulsa) extract. Adv Mater Process Technol. 2022;8(3):2699–715.
  • 13. Dixit A, Sabnis A, Balgude D, Kale S, Gada A, Kudu B, et al. Synthesis and characterization of citric acid and itaconic acid-based two-pack polyurethane antimicrobial coatings. Polym Bull. 2023;80(2):2187–216.
  • 14. Wang X, Zhang Y, Liang H, Zhou X, Fang C, Zhang C, et al. Synthesis and properties of castor oil-based waterborne polyurethane/sodium alginate composites with tunable properties. Carbohydr Polym. 2019;208(December 2018):391–7.
  • 15. Zhang Y, Li TT, Lou CW, Lin JH. Facile method for tent fabrics with eco-friendly/durable properties using waterborne polyurethane/lignin: Preparation and evaluation. J Ind Text. 2022 Jun 13;51:4149S-4166S.
  • 16. Wang H, Qiu X, Liu W, Fu F, Yang D. A novel Lignin/ZnO hybrid nanocomposite with excellent UVAbsorption ability and its application in transparent polyurethane coating. Ind Eng Chem Res. 2017;56(39):11133–41.
  • 17. Hui Z, Haonan Z, Hao R, Huamin Z. Optimized preparation of spruce kraft lignin/ZnO composites and their performance analysis in polyurethane films. Int J Biol Macromol. 2022;209:1465–76.
  • 18. Gaynor JG, Szlek DB, Kwon S, Tiller PS, Byington MS, Argyropoulos DS. Lignin use in nonwovens: A review. BioResources. 2022;17(2):3445–88.
  • 19. Klapiszewski Ł, Grząbka-Zasadzińska A, Borysiak S, Jesionowski T. Preparation and characterization of polypropylene composites reinforced by functional ZnO/lignin hybrid materials. Polym Test. 2019;79:106058: 1-9.
  • 20. Kaur R, Bhardwaj SK, Chandna S, Kim KH, Bhaumik J. Lignin-based metal oxide nanocomposites for UV protection applications: A review. J Clean Prod. 2021 Oct;317(June):128300.
  • 21. Sunthornvarabhas J, Liengprayoon S, Lerksamran T. Utilization of Lignin Extracts from Sugarcane Bagasse as Bio-based Antimicrobial Fabrics. Sugar Tech. 2019;21(2):355–63.
  • 22. Henn KA, Forsman N, Zou T, Österberg M. Colloidal Lignin Particles and Epoxies for Bio-Based, Durable, and Multiresistant Nanostructured Coatings. ACS Appl Mater Interfaces. 2021;13(29):34793–806.
  • 23. Mishra RS, Mishra AK, Raju KVSN. Synthesis and property study of UV-curable hyperbranched polyurethane acrylate/ZnO hybrid coatings. Eur Polym J. 2009;45(3):960–6.
  • 24. Li X, Chen X, Zhang S, Yin Y, Wang C. UV-resistant transparent lignin-based polyurethane elastomer with repeatable processing performance. Eur Polym J. 2021;159: 110763.
  • 25. Zimniewska M, Kozłowski R, Batog J. Nanolignin Modified Linen Fabric as a Multifunctional Product. Mol Cryst Liq Cryst ISSN. 2008;1406(484):43/409-50/416.
  • 26. Zimniewska M, Batog J, Bogacz E, Romanowska B. Functionalization of Natural Fibres Textiles by Improvement of Nanoparticles Fixation on Their Surface. J Fiber Bioeng Informatics Soc. 2012;3(Sep):321–2.
  • 27. Sunthornvarabhas J, Liengprayoon S, Suwonsichon T. Industrial Crops & Products Antimicrobial kinetic activities of lignin from sugarcane bagasse for textile product. Ind Crop Prod. 2017;109(October):857–61.
  • 28. Baysal G. Mechanical and UV protection performances of polylactic acid spunlace nonwoven fabrics coated by eco-friendly lignin / water-borne polyurethane composite coatings. J Text Inst. 2023;0(0):1–13.
  • 29. Sun N, Di M, Liu Y. Lignin-containing polyurethane elastomers with enhanced mechanical properties via hydrogen bond interactions. Int J Biol Macromol. 2021;184(February):1–8.
  • 30. Tian M, Hu X, Qu L, Zhu S, Sun Y, Han G. Versatile and ductile cotton fabric achieved via layer-by-layer self- assembly by consecutive adsorption of graphene doped PEDOT: PSS and chitosan. Carbon N Y. 2016;96:1166–74.
  • 31. Shaban M, Mohamed F, Abdallah S. Production and Characterization of Superhydrophobic and Antibacterial Coated Fabrics Utilizing ZnO Nanocatalyst. Sci Rep. 2018;8(1):1–15.
  • 32. Zhang H, Li K, Yao C, Gu J, Qin X. Preparation of zinc oxide loaded polyurethane/polysulfone composite nanofiber membrane and study on its waterproof and moisture permeability properties. Colloids Surfaces A Physicochem Eng Asp. 2021(Sep);629.
  • 33. Ye Z, Li S, Zhao S, Deng L, Zhang J, Dong A. Textile coatings configured by double-nanoparticles to optimally couple superhydrophobic and antibacterial properties. Chem Eng J. 2021;420(P2):127680.
  • 34. Kudzin MH, Mrozińska Z. Biofunctionalization of Textile Materials. 2. Antimicrobial Modification of Poly(lactide) (PLA) Nonwoven Fabricsby Fosfomycin. Polymers (Basel). 2020 Apr 1;12(4):768.
  • 35. Ng QY, Low JH, Pang MM, Idumah CI. Properties Enhancement of Waterborne Polyurethane Bio-composite Films with 3-aminopropyltriethoxy Silane Functionalized Lignin. J Polym Environ. 2022;688–97.
  • 36. Li J, Wang B, Chen K, Tian X, Zeng J, Xu J, et al. The use of lignin as cross-linker for polyurethane foam for potential application in adsorbing materials. BioResources. 2017;12(4):8653–71.
  • 37. Liu X, Gao C, Fu C, Xi Y, Fatehi P, Zhao JR, et al. Preparation and Performance of Lignin-Based Multifunctional Superhydrophobic Coating. Molecules. 2022;27(4):1–11.
  • 38. Šupová M, Martynková GS, Barabaszová K. Effect of nanofillers dispersion in polymer matrices: A review. Sci Adv Mater. 2011;3(1):1–25.
  • 39. Wang W, Guo T, Sun K, Jin Y, Gu F, Xiao H. Lignin redistribution for enhancing barrier properties of cellulose- based materials. Polymers (Basel). 2019;11(12):1–10.
  • 40. Ridho MR, Agustiany EA, Rahmi Dn M, Madyaratri EW, Ghozali M, Restu WK, et al. Lignin as Green Filler in Polymer Composites: Development Methods, Characteristics, and Potential Applications. Adv Mater Sci Eng. 2022 Apr;1–33.
  • 41. Shankar S, Reddy JP, Rhim JW. Effect of lignin on water vapor barrier, mechanical, and structural properties of agar/lignin composite films. Int J Biol Macromol. 2015;81:267–73.
  • 42. Lai Y, Qian Y, Yang D, Qiu X, Zhou M. Preparation and performance of lignin-based waterborne polyurethane emulsion. Ind. Cro. and Prod. 2021;170:(113739).
  • 43. Vieira FR, Magina S, Evtuguin D V., Barros-Timmons A. Lignin as a Renewable Building Block for Sustainable Polyurethanes. Materials (Basel). 2022 Sep 5;15(17):6182.
  • 44. Zhang H, Fu S, Chen Y. Basic understanding of the color distinction of lignin and the proper selection of lignin in color-depended utilizations. Int J Biol Macromol. 2020;147:607–15.
  • 45. Wang J, Deng, Y, Qian Y, Qiu X, Ren Y, Yang, D. Reduction of lignin color via one-step UV irradiation. Green Chem., 2016;18:695-99.
  • 46. Leo CP, Cathie Lee WP, Ahmad AL, Mohammad AW. Polysulfone membranes blended with ZnO nanoparticles for reducing fouling by oleic acid. Sep Purif Technol. 2012;89:51–6.
  • 47. Tyagi P, Gutierrez JN, Nathani V, Lucia LA, Rojas OJ, Hubbe MA, et al. Hydrothermal and mechanically generated hemp hurd nanofibers for sustainable barrier coatings/films. Ind Crops Prod. 2021;168(Sep): 113582.
  • 48. Pandya H, Mahanwar P. Fundamental insight into anionic aqueous polyurethane dispersions. Adv Ind Eng Polym Res. 2020;3(3):102–10.
  • 49. Wu L, Liu S, Wang Q, Wang Y, Ji X, Yang G, et al. High strength and multifunctional polyurethane film incorporated with lignin nanoparticles. Ind Crops Prod. 2022;177(September 2021):114526.
  • 50. Zhang N, Liu P, Yi Y, Gibril ME, Wang S, Kong F. Application of polyvinyl acetate/lignin copolymer as bio- based coating material and its effects on paper properties. Coatings. 2021;11(2):1–12.
  • 51. Lavrič G, Zamljen A, Grkman JJ, Jasiukaitytė-Grojzdek E, Grilc M, Likozar B, et al. Organosolv lignin barrier paper coatings from waste biomass resources. Polymers (Basel). 2021;13(24).
  • 52. Ng SF, Hui CL, Wong LF. Development of medical garments and apparel for the elderly and the disabled. Text Prog. 2011;43(4):235–85.
  • 53. N. Gokarneshan, D.A. Rachel, V. Rajendran, B. Lavanya, A. Ghoshal, Surgical gowns - techno economic aspects and innovations, in: Emerging Research Trends in Medical Textiles. Springer, Singapore, 2015. p. 97–119.
  • 54. Zhang Y, Li TT, Shiu BC, Sun F, Ren HT, Zhang XF, et al. Processing and characterizations of Short fluoroalkyl chain /polyurethane- polylactic acid/low melt polylactic acid Janus nonwoven Medical covers using spray coating. Prog Org Coat. 2020;147(May):105736.
  • 55. Pakdel E, Daoud WA, Afrin T, Sun L, Wang X. Enhanced antimicrobial coating on cotton and its impact on UV protection and physical characteristics. Cellulose. 2017;24(9):4003–15.
  • 56. Ullah I, Chen Z, Xie Y, Khan SS, Singh S, Yu C, et al. Recent advances in biological activities of lignin and emerging biomedical applications: A short review. Int J Biol Macromol. 2022;208(March):819–32.
Year 2024, Volume: 11 Issue: 2, 77 - 88, 30.06.2024
https://doi.org/10.17350/HJSE19030000334

Abstract

Project Number

122M737

References

  • 1. Carfagna C, Persico P. Functional Textiles Based on Polymer Composites. Macromol Symp. 2006 Dec 7;245–246(1):355–62.
  • 2. Wollina U, Heide M, Müller-Litz W, Obenauf D, Ash J. Functional Textiles in Prevention of Chronic Wounds, Wound Healing and Tissue Engineering. In: Textiles and the Skin. Basel: Karger; 2003. p. 82–97.
  • 3. Gupta M, Sheikh J, Annu, Singh A. An eco-friendly route to develop cellulose-based multifunctional finished linen fabric using ZnO NPs and CS network. J Ind Eng Chem. 2021;97:383–9.
  • 4. Muzaffar S, Abbas M, Siddiqua UH, Arshad M, Tufail A, Ahsan M, et al. Enhanced mechanical, UV protection and antimicrobial properties of cotton fabric employing nanochitosan and polyurethane based finishing. J Mater Res Technol. 2021;11:946–56.
  • 5. Deng C, Seidi F, Yong Q, Jin X, Li C, Zhang X, et al. Antiviral/antibacterial biodegradable cellulose nonwovens as environmentally friendly and bioprotective materials with potential to minimize microplastic pollution. J Hazard Mater. 2022 Feb;424:127391.
  • 6. Zhang Y, Li TT, Shiu BC, Sun F, Ren HT, Zhang X, et al. Eco-friendly versatile protective polyurethane/triclosan coated polylactic acid nonwovens for medical covers application. J Clean Prod. 2021;282:124455.
  • 7. Pan LS, Yang Q, Xu N, Pang SJ, Wang SF. Preparation and characterization of biodegradable polylactic acid/polypropylene spun-bonded nonwoven fabric slices. Int Polym Process. 2018;33(5):634–41.
  • 8. Chen T, Guo J, Xu H, Zhang J, Hu N, Liu H. One-step fabrication of biodegradable superhydrophobic PLA fabric for continuous oil/water separation. Appl Surf Sci. 2022 Feb;576:151766.
  • 9. Raman A, Sankar A, Abhirami SD, Anilkumar A, Saritha A. Insights into the Sustainable Development of Lignin-Based Textiles for Functional Applications. Macromol Mater Eng. 2022;307(8):1–18.
  • 10. Holme I. Innovative technologies for high performance textiles. Color Technol. 2007;123(2):59–73.
  • 11. Morales-Jiménez M, Gouveia L, Yañez-Fernandez J, Castro-Muñoz J, Barragan-Huerta BE. Microalgae- Based Biopolymer as a Potential Bioactive Film. Coatings. 2020;10:120.
  • 12. Dixit A, Sabnis A, Shetty A. Antimicrobial Edible Films and Coatings based on N,O-Carboxymethyl Chitosan incorporated with Ferula Asafoetida (Hing) and Adhatoda Vasica (Adulsa) extract. Adv Mater Process Technol. 2022;8(3):2699–715.
  • 13. Dixit A, Sabnis A, Balgude D, Kale S, Gada A, Kudu B, et al. Synthesis and characterization of citric acid and itaconic acid-based two-pack polyurethane antimicrobial coatings. Polym Bull. 2023;80(2):2187–216.
  • 14. Wang X, Zhang Y, Liang H, Zhou X, Fang C, Zhang C, et al. Synthesis and properties of castor oil-based waterborne polyurethane/sodium alginate composites with tunable properties. Carbohydr Polym. 2019;208(December 2018):391–7.
  • 15. Zhang Y, Li TT, Lou CW, Lin JH. Facile method for tent fabrics with eco-friendly/durable properties using waterborne polyurethane/lignin: Preparation and evaluation. J Ind Text. 2022 Jun 13;51:4149S-4166S.
  • 16. Wang H, Qiu X, Liu W, Fu F, Yang D. A novel Lignin/ZnO hybrid nanocomposite with excellent UVAbsorption ability and its application in transparent polyurethane coating. Ind Eng Chem Res. 2017;56(39):11133–41.
  • 17. Hui Z, Haonan Z, Hao R, Huamin Z. Optimized preparation of spruce kraft lignin/ZnO composites and their performance analysis in polyurethane films. Int J Biol Macromol. 2022;209:1465–76.
  • 18. Gaynor JG, Szlek DB, Kwon S, Tiller PS, Byington MS, Argyropoulos DS. Lignin use in nonwovens: A review. BioResources. 2022;17(2):3445–88.
  • 19. Klapiszewski Ł, Grząbka-Zasadzińska A, Borysiak S, Jesionowski T. Preparation and characterization of polypropylene composites reinforced by functional ZnO/lignin hybrid materials. Polym Test. 2019;79:106058: 1-9.
  • 20. Kaur R, Bhardwaj SK, Chandna S, Kim KH, Bhaumik J. Lignin-based metal oxide nanocomposites for UV protection applications: A review. J Clean Prod. 2021 Oct;317(June):128300.
  • 21. Sunthornvarabhas J, Liengprayoon S, Lerksamran T. Utilization of Lignin Extracts from Sugarcane Bagasse as Bio-based Antimicrobial Fabrics. Sugar Tech. 2019;21(2):355–63.
  • 22. Henn KA, Forsman N, Zou T, Österberg M. Colloidal Lignin Particles and Epoxies for Bio-Based, Durable, and Multiresistant Nanostructured Coatings. ACS Appl Mater Interfaces. 2021;13(29):34793–806.
  • 23. Mishra RS, Mishra AK, Raju KVSN. Synthesis and property study of UV-curable hyperbranched polyurethane acrylate/ZnO hybrid coatings. Eur Polym J. 2009;45(3):960–6.
  • 24. Li X, Chen X, Zhang S, Yin Y, Wang C. UV-resistant transparent lignin-based polyurethane elastomer with repeatable processing performance. Eur Polym J. 2021;159: 110763.
  • 25. Zimniewska M, Kozłowski R, Batog J. Nanolignin Modified Linen Fabric as a Multifunctional Product. Mol Cryst Liq Cryst ISSN. 2008;1406(484):43/409-50/416.
  • 26. Zimniewska M, Batog J, Bogacz E, Romanowska B. Functionalization of Natural Fibres Textiles by Improvement of Nanoparticles Fixation on Their Surface. J Fiber Bioeng Informatics Soc. 2012;3(Sep):321–2.
  • 27. Sunthornvarabhas J, Liengprayoon S, Suwonsichon T. Industrial Crops & Products Antimicrobial kinetic activities of lignin from sugarcane bagasse for textile product. Ind Crop Prod. 2017;109(October):857–61.
  • 28. Baysal G. Mechanical and UV protection performances of polylactic acid spunlace nonwoven fabrics coated by eco-friendly lignin / water-borne polyurethane composite coatings. J Text Inst. 2023;0(0):1–13.
  • 29. Sun N, Di M, Liu Y. Lignin-containing polyurethane elastomers with enhanced mechanical properties via hydrogen bond interactions. Int J Biol Macromol. 2021;184(February):1–8.
  • 30. Tian M, Hu X, Qu L, Zhu S, Sun Y, Han G. Versatile and ductile cotton fabric achieved via layer-by-layer self- assembly by consecutive adsorption of graphene doped PEDOT: PSS and chitosan. Carbon N Y. 2016;96:1166–74.
  • 31. Shaban M, Mohamed F, Abdallah S. Production and Characterization of Superhydrophobic and Antibacterial Coated Fabrics Utilizing ZnO Nanocatalyst. Sci Rep. 2018;8(1):1–15.
  • 32. Zhang H, Li K, Yao C, Gu J, Qin X. Preparation of zinc oxide loaded polyurethane/polysulfone composite nanofiber membrane and study on its waterproof and moisture permeability properties. Colloids Surfaces A Physicochem Eng Asp. 2021(Sep);629.
  • 33. Ye Z, Li S, Zhao S, Deng L, Zhang J, Dong A. Textile coatings configured by double-nanoparticles to optimally couple superhydrophobic and antibacterial properties. Chem Eng J. 2021;420(P2):127680.
  • 34. Kudzin MH, Mrozińska Z. Biofunctionalization of Textile Materials. 2. Antimicrobial Modification of Poly(lactide) (PLA) Nonwoven Fabricsby Fosfomycin. Polymers (Basel). 2020 Apr 1;12(4):768.
  • 35. Ng QY, Low JH, Pang MM, Idumah CI. Properties Enhancement of Waterborne Polyurethane Bio-composite Films with 3-aminopropyltriethoxy Silane Functionalized Lignin. J Polym Environ. 2022;688–97.
  • 36. Li J, Wang B, Chen K, Tian X, Zeng J, Xu J, et al. The use of lignin as cross-linker for polyurethane foam for potential application in adsorbing materials. BioResources. 2017;12(4):8653–71.
  • 37. Liu X, Gao C, Fu C, Xi Y, Fatehi P, Zhao JR, et al. Preparation and Performance of Lignin-Based Multifunctional Superhydrophobic Coating. Molecules. 2022;27(4):1–11.
  • 38. Šupová M, Martynková GS, Barabaszová K. Effect of nanofillers dispersion in polymer matrices: A review. Sci Adv Mater. 2011;3(1):1–25.
  • 39. Wang W, Guo T, Sun K, Jin Y, Gu F, Xiao H. Lignin redistribution for enhancing barrier properties of cellulose- based materials. Polymers (Basel). 2019;11(12):1–10.
  • 40. Ridho MR, Agustiany EA, Rahmi Dn M, Madyaratri EW, Ghozali M, Restu WK, et al. Lignin as Green Filler in Polymer Composites: Development Methods, Characteristics, and Potential Applications. Adv Mater Sci Eng. 2022 Apr;1–33.
  • 41. Shankar S, Reddy JP, Rhim JW. Effect of lignin on water vapor barrier, mechanical, and structural properties of agar/lignin composite films. Int J Biol Macromol. 2015;81:267–73.
  • 42. Lai Y, Qian Y, Yang D, Qiu X, Zhou M. Preparation and performance of lignin-based waterborne polyurethane emulsion. Ind. Cro. and Prod. 2021;170:(113739).
  • 43. Vieira FR, Magina S, Evtuguin D V., Barros-Timmons A. Lignin as a Renewable Building Block for Sustainable Polyurethanes. Materials (Basel). 2022 Sep 5;15(17):6182.
  • 44. Zhang H, Fu S, Chen Y. Basic understanding of the color distinction of lignin and the proper selection of lignin in color-depended utilizations. Int J Biol Macromol. 2020;147:607–15.
  • 45. Wang J, Deng, Y, Qian Y, Qiu X, Ren Y, Yang, D. Reduction of lignin color via one-step UV irradiation. Green Chem., 2016;18:695-99.
  • 46. Leo CP, Cathie Lee WP, Ahmad AL, Mohammad AW. Polysulfone membranes blended with ZnO nanoparticles for reducing fouling by oleic acid. Sep Purif Technol. 2012;89:51–6.
  • 47. Tyagi P, Gutierrez JN, Nathani V, Lucia LA, Rojas OJ, Hubbe MA, et al. Hydrothermal and mechanically generated hemp hurd nanofibers for sustainable barrier coatings/films. Ind Crops Prod. 2021;168(Sep): 113582.
  • 48. Pandya H, Mahanwar P. Fundamental insight into anionic aqueous polyurethane dispersions. Adv Ind Eng Polym Res. 2020;3(3):102–10.
  • 49. Wu L, Liu S, Wang Q, Wang Y, Ji X, Yang G, et al. High strength and multifunctional polyurethane film incorporated with lignin nanoparticles. Ind Crops Prod. 2022;177(September 2021):114526.
  • 50. Zhang N, Liu P, Yi Y, Gibril ME, Wang S, Kong F. Application of polyvinyl acetate/lignin copolymer as bio- based coating material and its effects on paper properties. Coatings. 2021;11(2):1–12.
  • 51. Lavrič G, Zamljen A, Grkman JJ, Jasiukaitytė-Grojzdek E, Grilc M, Likozar B, et al. Organosolv lignin barrier paper coatings from waste biomass resources. Polymers (Basel). 2021;13(24).
  • 52. Ng SF, Hui CL, Wong LF. Development of medical garments and apparel for the elderly and the disabled. Text Prog. 2011;43(4):235–85.
  • 53. N. Gokarneshan, D.A. Rachel, V. Rajendran, B. Lavanya, A. Ghoshal, Surgical gowns - techno economic aspects and innovations, in: Emerging Research Trends in Medical Textiles. Springer, Singapore, 2015. p. 97–119.
  • 54. Zhang Y, Li TT, Shiu BC, Sun F, Ren HT, Zhang XF, et al. Processing and characterizations of Short fluoroalkyl chain /polyurethane- polylactic acid/low melt polylactic acid Janus nonwoven Medical covers using spray coating. Prog Org Coat. 2020;147(May):105736.
  • 55. Pakdel E, Daoud WA, Afrin T, Sun L, Wang X. Enhanced antimicrobial coating on cotton and its impact on UV protection and physical characteristics. Cellulose. 2017;24(9):4003–15.
  • 56. Ullah I, Chen Z, Xie Y, Khan SS, Singh S, Yu C, et al. Recent advances in biological activities of lignin and emerging biomedical applications: A short review. Int J Biol Macromol. 2022;208(March):819–32.
There are 56 citations in total.

Details

Primary Language English
Subjects Functional Materials, Textile Sciences and Engineering (Other)
Journal Section Research Articles
Authors

Gülçin Baysal 0000-0001-6681-868X

Project Number 122M737
Publication Date June 30, 2024
Submission Date March 21, 2024
Acceptance Date May 23, 2024
Published in Issue Year 2024 Volume: 11 Issue: 2

Cite

Vancouver Baysal G. Investigation of Barrier Effectiveness and Comfort Properties of Biodegradable PLA Nonwoven Fabrics Coated with Unmodified Lignin/Water-Borne Polyurethane Composite Coatings. Hittite J Sci Eng. 2024;11(2):77-88.

Hittite Journal of Science and Engineering is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY NC).