Research Article
BibTex RIS Cite
Year 2020, Volume: 37 Issue: 2, 144 - 149, 01.12.2020
https://doi.org/10.16882/hortis.833488

Abstract

References

  • Bartlem, D.G., Jones, M.G.K., & Hammes, U.Z. (2014). Vascularization and nutrient delivery at root-knot nematode feeding sites in host roots. Journal of Experimental Botany, 65:1789-1798.
  • Bird, D.M., & Kaloshian, I. (2003). Are roots special? Nematodes have their say. Physiological and Molecular Plant Pathology, 62:115-123.
  • Bozbuga, R., Dasgan, H.Y., Akhoundnejad, Y., Imren, M., Toktay, H., & Kasapoglu, E.B. (2015a). Identification of common bean (P. vulgaris) genotypes having resistance against root knot nematode Meloidogyne incognita. Legume Research, 38:669-674.
  • Bozbuga, R., Imren, M., Kasapoğlu, E.B., Toktay, H. & Elekcioğlu, I.H. (2015b). Determining the optimal Meloidogyne incognita inoculum level, inoculation time, pathogenicity and gall development on tomato roots for resistance experiments in breeding programs. Vegetos, 28:70–75.
  • Bozbuga, R. (2017). Characterisation of cell walls at the feeding site of Meloidogyne incognita, PhD thesis, University of Leeds, Leeds.
  • Bozbuga, R., Lilley, J.L., Knox, J.P. & Urwin, P.E. (2018). Host-specific signatures of the cell wall changes induced by the plant parasitic nematode, Meloidogyne incognita. Scientific Reports, 8:17302.
  • Bozbuga, R., Dasgan, H.Y., Akhoundnejad, Y., Imren, M., Günay, O., & Toktay, H. (2020). Effect of Mi gene and nematode resistance on tomato genotypes using molecular and screening assay. Cytology and Genetics, 54:154–164.
  • Bozbuga, R. (2020a). Expressions of pathogenesis related 1 (PR1) gene in Solanum lycopersicum and Influence of salicylic acid exposures on host-Meloidogyne incognita interactions. Doklady Biochemistry Biophysics, 494:266–269.
  • Bozbuga, R. (2020b). Genetics, molecular interactions and resistance response of common bean (Phaseolus vulgaris L.) genotypes to root knot nematodes (Meloidogyne spp.). Cutting-edge Research in Agricultural Sciences, 3:78-83.
  • Branch, C., Hwang, C.F., Navarre, D.A., & Williamson, V.M. (2004). Salicylic acid is part of the Mi-1-mediated defense responses to root-knot nematode in tomato. Mol Plant- Microbe Interact, 17:351-356.
  • Chinnapandi, B., Bucki, P., & Braun Miyara, S. (2017). SlWRKY45, nematode-responsive tomato WRKY gene, enhances susceptibility to the root knot nematode; M. javanica infection. Plant Signaling & Behavior, 12: e1356530.
  • Elling, A.A. (2013). Major emerging problems with minor Meloidogyne species. Phytopathology, 103:1092-1102.
  • Fuller, V.L., Lilley, C.J., Atkinson, H.J., & Urwin, P.E. (2007). Differential gene expression in Arabidopsis following infection by plant- parasitic nematodes Meloidogyne incognita and Heterodera schachtii. Molecular Plant Pathology, 8:595-609.
  • Ginzinger, D.G. (2002) Gene quantification using real-time quantitative PCR: An emerging technology hits the mainstream. Experimental Hematology, 30:503-512.
  • Hartman, K.M., & Sasser, J.N. (1985). Identification of Meloidogyne species on the basis of different host test and perineal pattern morphology. In: Barker, K.R., Carter, C.C., Sasser, J.N., (eds) An Advanced treatise on Meloidogyne, North Carolina State University Graphics, Raleigh, 2:69-77.
  • Heredia, A., Jimenez, A., & Guillen, R. (1995). Composition of plant-cell walls. Zeitschrift Fur Lebensmittel-Untersuchung Und-Forschung, 200:24-31.
  • Jones, J.D.G., & Dangl, J.L. (2006). The plant immune system. Nature, 444: 323–329.
  • Jones, J.T., Haegeman, A., Danchin, E. G. J., Gaur, H. S., Helder, J., Jones, M. G. K., Kikuchi, T., Manzanilla-Lopez, R., Palomares-Rius, J. E., Wesemael, W. M. L., & Perry, R. N. (2013). Top 10 plant-parasitic nematodes in molecular plant pathology. Molecular Plant Pathology, 14:946-961.
  • Kavroulakis, N., Papadopoulou, K.K., Ntougias, S., Zervakis, G.I., & Ehaliotis, C. (2006). Cytological and other aspects of pathogenesis- related gene expression in tomato plants grown on a suppressive compost. Annals of Botany 98:555–564.
  • Lavrova, V.V., Zinovieva, S.V., Udalova, Z.V., & Matveeva, E.M. (2017). Expression of PR genes in tomato tissues infected by nematode Meloidogyne incognita (Kofoid et White, 1919) Chitwood, 1949. Doklady Biochemistry and Biophysics, 476:306–309.
  • Li, Y., Fester, T., & Taylor, C.G. (2009) Transcriptomic Analysis of Nematode Infestation. In: Berg, R.H., Taylor, C.G. (eds) Cell Biology of Plant Nematode Parasitism, Plant Cell Monographs, 15, Springer, Berlin, Heidelberg.
  • Lin, J., Mazarei, M., Zhao, N., Zhu, N.J., Zhuang, X., Liu, W., Pan- talone, V.R., Arelli, P.R., & Stewart Jr, C.N. (2013). Overexpression of a soybean salicylic acid methyltransferase gene confers resistance to soybean cyst nematode. Plant Biotech Journal, 11:1135-
  • Moller, S.G., Urwin, P.E., Atkinson, H.J., & Mcpherson, M.J. (1998). Nematode-induced expression of atao1, a gene encoding an extracellular diamine oxidase associated with developing vascular tissue. Physiological and Molecular Plant Pathology, 53:73-79.
  • Moreau, M., Tian, M., & Klessig, D. (2012). Salicylic acid binds NPR3 and NPR4 to regulate NPR1-dependent defense responses. Cell Research, 22:1631–1633.
  • Moslemi, F., Fatemy, S., & Bernard, F. (2016). Inhibitory effects of salicylic acid on Meloidogyne javanica reproduction in tomato plants. Spanish Journal of Agricultural Research, 14: e1001.
  • Shi, Z., Maximova, S.N., Liu, Y., Verica, J., & Guiltinan, M.J. (2010). Functional analysis of the Theobroma cacao NPR1 gene in Arabidopsis. BMC Plant Biology, 10: 248. Shi, Z., Maximova, S., Liu, Y., Verica, J., & Guiltinan, M.J (2013). The salicylic acid receptor NPR3 is a negative regulator of the transcriptional defense response during early flower development in Arabidopsis. Molecular Plant, 6:802-816.
  • van Loon, L.C., Pierpoint, W.S., Boller, T., & Conejero, V. (1994). Recommendations for Naming Plant Pathogenesis-Related Proteins. Plant Molecular Biology Reporter, 12:245-264.
  • van Loon, L.C., Rep, M., & Pieterse, C.M.J. (2006). Significance of inducible defense-related proteins in infected plants. Annual Review of Phytopathology, 44:135–162.
  • Vlot, A.C, Dempsey, D.A., & Klessig, D.F. (2009). Salicylic acid, a multifaceted hormone to combat disease. Annual Review Phytopathology, 47:177-206.
  • Yan, S., & Dong, X. (2014). Perception of the plant immune signal salicylic acid. Current Opinion in Plant Biology, 20:64–68.
  • Zhao, X., Wang, J., Yuan, J., Wang, X., Zhao, Q., Kong, P., & Zhang, X. (2015). Nitric oxide-associated protein1 (AtNOA1) is essential for salicylic acid-induced root waving in Arabidopsis thaliana. New Phytology, 1:1-13.

Effect of Submerging Solanum lycopersicum Roots in Salicylic Acid (SA) Solution for Different Durations on Nematode Infection and Expressions of SlPR5 Gene

Year 2020, Volume: 37 Issue: 2, 144 - 149, 01.12.2020
https://doi.org/10.16882/hortis.833488

Abstract

Salicylic acid (SA) stimulates the mechanism of the plant defence and involves in a role in plant pathogen interactions. Plant parasitic nematodes are important biotic stresses causing negative effect on plant growth and development. Treatment of plant roots with SA may increase the plant defence mechanisms against biotic stresses. However, the treated effect of SA on plant defence mechanisms against a root-knot nematode, Meloidogyne incognita, has not been fully understood in terms of plant pathogen interactions. Therefore, this study was aimed to determine the most effective SA exposure time on increasing the plant defence and decreasing the nematode parasitism in Solanum lycopersicum. In addition, effects of SA treatment on the expression Pathogenesis Related Gene 5 (PR5) was evaluated. For this aim, tomato seedlings were exposed within 1000µM SA concentration with distinctive time durations. The expression of PR5 gene was accomplished using RT-PCR at 1, 3, 7, 14, 21 days post infection (dpi) for each sample. Root galling index, nematode number and reproduction rate were evaluated. Results revealed that nematode reproduction rate was decreased at in longer durations after SA treatment on roots. The highest nematode reproduction rate was determined in nematode+water (non-SA treatment) application compare to SA treatments. The highest increased level of expression of SlPR5 gene was determined in early (1 dpi) SA treatment + nematode infection. To conclude, SA treatment may increase the plant defence mechanisms and PR5 gene may involve in nematode-plant parasitism.

References

  • Bartlem, D.G., Jones, M.G.K., & Hammes, U.Z. (2014). Vascularization and nutrient delivery at root-knot nematode feeding sites in host roots. Journal of Experimental Botany, 65:1789-1798.
  • Bird, D.M., & Kaloshian, I. (2003). Are roots special? Nematodes have their say. Physiological and Molecular Plant Pathology, 62:115-123.
  • Bozbuga, R., Dasgan, H.Y., Akhoundnejad, Y., Imren, M., Toktay, H., & Kasapoglu, E.B. (2015a). Identification of common bean (P. vulgaris) genotypes having resistance against root knot nematode Meloidogyne incognita. Legume Research, 38:669-674.
  • Bozbuga, R., Imren, M., Kasapoğlu, E.B., Toktay, H. & Elekcioğlu, I.H. (2015b). Determining the optimal Meloidogyne incognita inoculum level, inoculation time, pathogenicity and gall development on tomato roots for resistance experiments in breeding programs. Vegetos, 28:70–75.
  • Bozbuga, R. (2017). Characterisation of cell walls at the feeding site of Meloidogyne incognita, PhD thesis, University of Leeds, Leeds.
  • Bozbuga, R., Lilley, J.L., Knox, J.P. & Urwin, P.E. (2018). Host-specific signatures of the cell wall changes induced by the plant parasitic nematode, Meloidogyne incognita. Scientific Reports, 8:17302.
  • Bozbuga, R., Dasgan, H.Y., Akhoundnejad, Y., Imren, M., Günay, O., & Toktay, H. (2020). Effect of Mi gene and nematode resistance on tomato genotypes using molecular and screening assay. Cytology and Genetics, 54:154–164.
  • Bozbuga, R. (2020a). Expressions of pathogenesis related 1 (PR1) gene in Solanum lycopersicum and Influence of salicylic acid exposures on host-Meloidogyne incognita interactions. Doklady Biochemistry Biophysics, 494:266–269.
  • Bozbuga, R. (2020b). Genetics, molecular interactions and resistance response of common bean (Phaseolus vulgaris L.) genotypes to root knot nematodes (Meloidogyne spp.). Cutting-edge Research in Agricultural Sciences, 3:78-83.
  • Branch, C., Hwang, C.F., Navarre, D.A., & Williamson, V.M. (2004). Salicylic acid is part of the Mi-1-mediated defense responses to root-knot nematode in tomato. Mol Plant- Microbe Interact, 17:351-356.
  • Chinnapandi, B., Bucki, P., & Braun Miyara, S. (2017). SlWRKY45, nematode-responsive tomato WRKY gene, enhances susceptibility to the root knot nematode; M. javanica infection. Plant Signaling & Behavior, 12: e1356530.
  • Elling, A.A. (2013). Major emerging problems with minor Meloidogyne species. Phytopathology, 103:1092-1102.
  • Fuller, V.L., Lilley, C.J., Atkinson, H.J., & Urwin, P.E. (2007). Differential gene expression in Arabidopsis following infection by plant- parasitic nematodes Meloidogyne incognita and Heterodera schachtii. Molecular Plant Pathology, 8:595-609.
  • Ginzinger, D.G. (2002) Gene quantification using real-time quantitative PCR: An emerging technology hits the mainstream. Experimental Hematology, 30:503-512.
  • Hartman, K.M., & Sasser, J.N. (1985). Identification of Meloidogyne species on the basis of different host test and perineal pattern morphology. In: Barker, K.R., Carter, C.C., Sasser, J.N., (eds) An Advanced treatise on Meloidogyne, North Carolina State University Graphics, Raleigh, 2:69-77.
  • Heredia, A., Jimenez, A., & Guillen, R. (1995). Composition of plant-cell walls. Zeitschrift Fur Lebensmittel-Untersuchung Und-Forschung, 200:24-31.
  • Jones, J.D.G., & Dangl, J.L. (2006). The plant immune system. Nature, 444: 323–329.
  • Jones, J.T., Haegeman, A., Danchin, E. G. J., Gaur, H. S., Helder, J., Jones, M. G. K., Kikuchi, T., Manzanilla-Lopez, R., Palomares-Rius, J. E., Wesemael, W. M. L., & Perry, R. N. (2013). Top 10 plant-parasitic nematodes in molecular plant pathology. Molecular Plant Pathology, 14:946-961.
  • Kavroulakis, N., Papadopoulou, K.K., Ntougias, S., Zervakis, G.I., & Ehaliotis, C. (2006). Cytological and other aspects of pathogenesis- related gene expression in tomato plants grown on a suppressive compost. Annals of Botany 98:555–564.
  • Lavrova, V.V., Zinovieva, S.V., Udalova, Z.V., & Matveeva, E.M. (2017). Expression of PR genes in tomato tissues infected by nematode Meloidogyne incognita (Kofoid et White, 1919) Chitwood, 1949. Doklady Biochemistry and Biophysics, 476:306–309.
  • Li, Y., Fester, T., & Taylor, C.G. (2009) Transcriptomic Analysis of Nematode Infestation. In: Berg, R.H., Taylor, C.G. (eds) Cell Biology of Plant Nematode Parasitism, Plant Cell Monographs, 15, Springer, Berlin, Heidelberg.
  • Lin, J., Mazarei, M., Zhao, N., Zhu, N.J., Zhuang, X., Liu, W., Pan- talone, V.R., Arelli, P.R., & Stewart Jr, C.N. (2013). Overexpression of a soybean salicylic acid methyltransferase gene confers resistance to soybean cyst nematode. Plant Biotech Journal, 11:1135-
  • Moller, S.G., Urwin, P.E., Atkinson, H.J., & Mcpherson, M.J. (1998). Nematode-induced expression of atao1, a gene encoding an extracellular diamine oxidase associated with developing vascular tissue. Physiological and Molecular Plant Pathology, 53:73-79.
  • Moreau, M., Tian, M., & Klessig, D. (2012). Salicylic acid binds NPR3 and NPR4 to regulate NPR1-dependent defense responses. Cell Research, 22:1631–1633.
  • Moslemi, F., Fatemy, S., & Bernard, F. (2016). Inhibitory effects of salicylic acid on Meloidogyne javanica reproduction in tomato plants. Spanish Journal of Agricultural Research, 14: e1001.
  • Shi, Z., Maximova, S.N., Liu, Y., Verica, J., & Guiltinan, M.J. (2010). Functional analysis of the Theobroma cacao NPR1 gene in Arabidopsis. BMC Plant Biology, 10: 248. Shi, Z., Maximova, S., Liu, Y., Verica, J., & Guiltinan, M.J (2013). The salicylic acid receptor NPR3 is a negative regulator of the transcriptional defense response during early flower development in Arabidopsis. Molecular Plant, 6:802-816.
  • van Loon, L.C., Pierpoint, W.S., Boller, T., & Conejero, V. (1994). Recommendations for Naming Plant Pathogenesis-Related Proteins. Plant Molecular Biology Reporter, 12:245-264.
  • van Loon, L.C., Rep, M., & Pieterse, C.M.J. (2006). Significance of inducible defense-related proteins in infected plants. Annual Review of Phytopathology, 44:135–162.
  • Vlot, A.C, Dempsey, D.A., & Klessig, D.F. (2009). Salicylic acid, a multifaceted hormone to combat disease. Annual Review Phytopathology, 47:177-206.
  • Yan, S., & Dong, X. (2014). Perception of the plant immune signal salicylic acid. Current Opinion in Plant Biology, 20:64–68.
  • Zhao, X., Wang, J., Yuan, J., Wang, X., Zhao, Q., Kong, P., & Zhang, X. (2015). Nitric oxide-associated protein1 (AtNOA1) is essential for salicylic acid-induced root waving in Arabidopsis thaliana. New Phytology, 1:1-13.
There are 31 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering
Journal Section Araştırma Makalesi
Authors

Refik Bozbuga This is me 0000-0001-9201-5725

Publication Date December 1, 2020
Published in Issue Year 2020 Volume: 37 Issue: 2

Cite

APA Bozbuga, R. (2020). Effect of Submerging Solanum lycopersicum Roots in Salicylic Acid (SA) Solution for Different Durations on Nematode Infection and Expressions of SlPR5 Gene. Horticultural Studies, 37(2), 144-149. https://doi.org/10.16882/hortis.833488
AMA Bozbuga R. Effect of Submerging Solanum lycopersicum Roots in Salicylic Acid (SA) Solution for Different Durations on Nematode Infection and Expressions of SlPR5 Gene. HortiS. December 2020;37(2):144-149. doi:10.16882/hortis.833488
Chicago Bozbuga, Refik. “Effect of Submerging Solanum Lycopersicum Roots in Salicylic Acid (SA) Solution for Different Durations on Nematode Infection and Expressions of SlPR5 Gene”. Horticultural Studies 37, no. 2 (December 2020): 144-49. https://doi.org/10.16882/hortis.833488.
EndNote Bozbuga R (December 1, 2020) Effect of Submerging Solanum lycopersicum Roots in Salicylic Acid (SA) Solution for Different Durations on Nematode Infection and Expressions of SlPR5 Gene. Horticultural Studies 37 2 144–149.
IEEE R. Bozbuga, “Effect of Submerging Solanum lycopersicum Roots in Salicylic Acid (SA) Solution for Different Durations on Nematode Infection and Expressions of SlPR5 Gene”, HortiS, vol. 37, no. 2, pp. 144–149, 2020, doi: 10.16882/hortis.833488.
ISNAD Bozbuga, Refik. “Effect of Submerging Solanum Lycopersicum Roots in Salicylic Acid (SA) Solution for Different Durations on Nematode Infection and Expressions of SlPR5 Gene”. Horticultural Studies 37/2 (December 2020), 144-149. https://doi.org/10.16882/hortis.833488.
JAMA Bozbuga R. Effect of Submerging Solanum lycopersicum Roots in Salicylic Acid (SA) Solution for Different Durations on Nematode Infection and Expressions of SlPR5 Gene. HortiS. 2020;37:144–149.
MLA Bozbuga, Refik. “Effect of Submerging Solanum Lycopersicum Roots in Salicylic Acid (SA) Solution for Different Durations on Nematode Infection and Expressions of SlPR5 Gene”. Horticultural Studies, vol. 37, no. 2, 2020, pp. 144-9, doi:10.16882/hortis.833488.
Vancouver Bozbuga R. Effect of Submerging Solanum lycopersicum Roots in Salicylic Acid (SA) Solution for Different Durations on Nematode Infection and Expressions of SlPR5 Gene. HortiS. 2020;37(2):144-9.