Review
BibTex RIS Cite

Sulforaphane, Potential Mechanism of Action and Its Relationship with Diseases

Year 2019, Volume: 6 Issue: 1, 153 - 160, 10.02.2019
https://doi.org/10.17681/hsp.396016

Abstract

Bioactive compounds found naturally in the
structure of plants plays a role in protecting the health and prevention of
chronic diseases. They can act directly on genes or indirectly as conjugates
with various molecules. There are a number of studies evaluating the effect of
broccoli and other cruciferous vegetables (radish, cabbage, cauliflower,
brussel sprouts) on diseases. It is stated that these effects are provided by
the isothiocyanates present in the structure. Isothiocyanates are stored as
glucosinolate precursors in plants; The myrosinase enzyme glucosinolates, which
gain activity by processes such as harvesting, chewing, cutting, chopping, are
hydrolyzed to isothiocyanates. Sulforaphane is the major isothiocyanate present
in broccoli. In organism, the mechanisms of action such as stimulation of phase
II enzymes, inhibition of phase I enzymes and histone deacetylase enzyme
activity and increase of thioredoxin reductase enzyme expression have positive
effects on many diseases such as cancer, diabetes, oxidative stress,
helicobacter plyori infection, neurological diseases, eye diseases the results
of which have been demonstrated by studies. Studies were not found to result in
toxic effects of sulforaphane and concluded to be safe. In this study,
sulforaphane metabolism, mechanism of action, effects on health,
bioavailability and effective dose of the factors affecting it were evaluated.

References

  • 1. Herr I, Büchler MW. Dietary constituents of broccoli and other cruciferous vegetables: implications for prevention and therapy of cancer. Cancer treatment reviews. 2010;36(5):377-83.
  • 2. Bohinc T, Ban SG, Ban D, Stanislav T. Glucosinolates in plant protection strategies: a review. Archives of Biological Sciences. 2012;64(3):821-4.
  • 3. Sulforophane glucosinolate. Monograph. Alternative Medicine Review 2010;15(4):352-60.
  • 4. Fatma Ç, Gülden K. Kanser ve Sülforafan. Beslenme ve Diyet Dergisi. 2013;41(3):266-73.
  • 5. Zhang Y, Talalay P, Cho C-G, Posner GH. A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure. Proceedings of the national academy of sciences. 1992;89(6):2399-403.
  • 6. Conzatti A, Froes F, Schweigert Perry ID, Souza C. Clinical and molecular evidence of the consumption of broccoli, glucoraphanin and sulforaphane in humans. Nutr Hosp. 2014;31(2):559-69.
  • 7. Guerrero-Beltrán CE, Calderón-Oliver M, Pedraza-Chaverri J, Chirino YI. Protective effect of sulforaphane against oxidative stress: recent advances. Experimental and Toxicologic Pathology. 2012;64(5):503-8.
  • 8. Kaufman-Szymczyk A, Majewski G, Lubecka-Pietruszewska K, Fabianowska-Majewska K. The role of sulforaphane in epigenetic mechanisms, including interdependence between histone modification and DNA methylation. International journal of molecular sciences. 2015;16(12):29732-43.
  • 9. Dinkova-Kostova AT, Jenkins SN, Fahey JW, Ye L, Wehage SL, Liby KT, et al. Protection against UV-light-induced skin carcinogenesis in SKH-1 high-risk mice by sulforaphane-containing broccoli sprout extracts. Cancer letters. 2006;240(2):243-52.
  • 10. Guo R, Yuan G, Wang Q. Effect of sucrose and mannitol on the accumulation of health-promoting compounds and the activity of metabolic enzymes in broccoli sprouts. Scientia Horticulturae. 2011;128(3):159-65.
  • 11. Steck SE, Gammon MD, Hebert JR, Wall DE, Zeisel SH. GSTM1, GSTT1, GSTP1, and GSTA1 polymorphisms and urinary isothiocyanate metabolites following broccoli consumption in humans. The Journal of nutrition. 2007;137(4):904-9.
  • 12. Elbarbry F, Elrody N. Potential health benefits of sulforaphane: a review of the experimental, clinical and epidemiological evidences and underlying mechanisms. Journal of Medicinal Plants Research. 2011;5(4):473-84.
  • 13. Kensler TW, Egner PA, Agyeman AS, Visvanathan K, Groopman JD, Chen J-G, et al. Keap1–nrf2 signaling: a target for cancer prevention by sulforaphane. Natural Products in Cancer Prevention and Therapy: Springer; 2012. p. 163-77.
  • 14. Kelsey NA, Wilkins HM, Linseman DA. Nutraceutical antioxidants as novel neuroprotective agents. Molecules. 2010;15(11):7792-814.15. Wu X, Zhou Q-h, Xu K. Are isothiocyanates potential anti-cancer drugs? Acta Pharmacologica Sinica. 2009;30(5):501-12.
  • 15. Wu X, Zhou Q-h, Xu K. Are isothiocyanates potential anti-cancer drugs? Acta Pharmacologica Sinica. 2009;30(5):501-12.
  • 16. Fimognari C, Lenzi M, Hrelia P. Chemoprevention of cancer by isothiocyanates and anthocyanins: mechanisms of action and structure-activity relationship. Current medicinal chemistry. 2008;15(5):440-7.
  • 17. Bassett SA, Barnett MP. The role of dietary histone deacetylases (HDACs) inhibitors in health and disease. Nutrients. 2014;6(10):4273-301.
  • 18. Jeong W-S, Kim I-W, Hu R, Kong A-NT. Modulatory properties of various natural chemopreventive agents on the activation of NF-κB signaling pathway. Pharmaceutical research. 2004;21(4):661-70.
  • 19. Bertl E, Bartsch H, Gerhäuser C. Inhibition of angiogenesis and endothelial cell functions are novel sulforaphane-mediated mechanisms in chemoprevention. Molecular cancer therapeutics. 2006;5(3):575-85.
  • 20. Burke-Gaffney A, Callister ME, Nakamura H. Thioredoxin: friend or foe in human disease? Trends in pharmacological sciences. 2005;26(8):398-404.21.
  • 21. Forouzanfar MH, Afshin A, Alexander LT, Anderson HR, Bhutta ZA, Biryukov S, et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. The Lancet. 2016;388(10053):1659-724.
  • 22. Latté KP, Appel K-E, Lampen A. Health benefits and possible risks of broccoli–an overview. Food and Chemical Toxicology. 2011;49(12):3287-309.23. Wattenberg LW. Inhibition of Carcinogenic Effects of Polycyclic Hydrocarbons by Benzyl Isothiocyanate and Related Compounds 2. Journal of the National Cancer Institute. 1977;58(2):395-8.
  • 23. Wattenberg LW. Inhibition of Carcinogenic Effects of Polycyclic Hydrocarbons by Benzyl Isothiocyanate and Related Compounds 2. Journal of the National Cancer Institute. 1977;58(2):395-8.
  • 24. Singh SV, Singh K. Cancer chemoprevention with dietary isothiocyanates mature for clinical translational research. Carcinogenesis. 2012;33(10):1833-42.25.
  • 25. Li Y, Zhang T, Korkaya H, Liu S, Lee H-F, Newman B, et al. Sulforaphane, a dietary component of broccoli/broccoli sprouts, inhibits breast cancer stem cells. Clinical Cancer Research. 2010;16(9):2580-90.
  • 26. Park SY, Kim GY, Bae S-J, Yoo YH, Choi YH. Induction of apoptosis by isothiocyanate sulforaphane in human cervical carcinoma HeLa and hepatocarcinoma HepG2 cells through activation of caspase-3. Oncology reports. 2007;18(1):181-8.
  • 27. Rudolf E, Andělová H, Červinka M. Activation of several concurrent proapoptic pathways by sulforaphane in human colon cancer cells SW620. Food and Chemical Toxicology. 2009;47(9):2366-73.
  • 28. Kensler TW, Chen J-G, Egner PA, Fahey JW, Jacobson LP, Stephenson KK, et al. Effects of glucosinolate-rich broccoli sprouts on urinary levels of aflatoxin-DNA adducts and phenanthrene tetraols in a randomized clinical trial in He Zuo township, Qidong, People's Republic of China. Cancer Epidemiology and Prevention Biomarkers. 2005;14(11):2605-13.
  • 29. Mirmiran P, Bahadoran Z, Hosseinpanah F, Keyzad A, Azizi F. Effects of broccoli sprout with high sulforaphane concentration on inflammatory markers in type 2 diabetic patients: A randomized double-blind placebo-controlled clinical trial. Journal of Functional Foods. 2012;4(4):837-41.
  • 30. Bahadoran Z, Mirmiran P, Hosseinpanah F, Hedayati M, Hosseinpour-Niazi S, Azizi F. Broccoli sprouts reduce oxidative stress in type 2 diabetes: a randomized double-blind clinical trial. European journal of clinical nutrition. 2011;65(8):972-7.
  • 31. Bahadoran Z, Tohidi M, Nazeri P, Mehran M, Azizi F, Mirmiran P. Effect of broccoli sprouts on insulin resistance in type 2 diabetic patients: a randomized double-blind clinical trial. International journal of food sciences and nutrition. 2012;63(7):767-71.
  • 32. Fukami K, Matsui T, Yamagishi S. Sulforaphane inhibits formation of advanced glycation end products in vitro. Diabetes Frontier Online. 2014;1:e1-e001.
  • 33. Kajikawa M, Nakashima A, Fujimura N, Maruhashi T, Iwamoto Y, Iwamoto A, et al. Ratio of serum levels of AGEs to soluble form of RAGE is a predictor of endothelial function. Diabetes Care. 2015;38(1):119-25.
  • 34. Yamagishi S, Nishino Y, Ojima A, Matsui T, Nishi H. Oral consumption of sulforaphane precursor-rich broccoli supersprouts decreases serum levels of advanced glycation end products in humans. Diabetes Frontier Online. 2015;2:e1-e011.
  • 35. Miao X, Bai Y, Sun W, Cui W, Xin Y, Wang Y, et al. Sulforaphane prevention of diabetes-induced aortic damage was associated with the up-regulation of Nrf2 and its down-stream antioxidants. Nutrition & metabolism. 2012;9(1):84.
  • 36. Negi G, Kumar A, S Sharma S. Nrf2 and NF-κB modulation by sulforaphane counteracts multiple manifestations of diabetic neuropathy in rats and high glucose-induced changes. Current neurovascular research. 2011;8(4):294-304.
  • 37. Bonetto JHP, Fernandes RO, Seolin BGdL, Müller DD, Teixeira RB, Araujo AS, et al. Sulforaphane improves oxidative status without attenuating the inflammatory response or cardiac impairment induced by ischemia–reperfusion in rats. Canadian journal of physiology and pharmacology. 2015;94(5):508-16.
  • 38. Ku S-K, Bae J-S. Antithrombotic activities of sulforaphane via inhibiting platelet aggregation and FIIa/FXa. Archives of pharmacal research. 2014;37(11):1454-63.
  • 39. Zhu H, Jia Z, Strobl JS, Ehrich M, Misra HP, Li Y. Potent induction of total cellular and mitochondrial antioxidants and phase 2 enzymes by cruciferous sulforaphane in rat aortic smooth muscle cells: cytoprotection against oxidative and electrophilic stress. Cardiovascular toxicology. 2008;8(3):115.
  • 40. Zhang X, Shu X-O, Xiang Y-B, Yang G, Li H, Gao J, et al. Cruciferous vegetable consumption is associated with a reduced risk of total and cardiovascular disease mortality. The American journal of clinical nutrition. 2011;94(1), 240-246.
  • 41. Riso P, Martini D, Møller P, Loft S, Bonacina G, Moro M, et al. DNA damage and repair activity after broccoli intake in young healthy smokers. Mutagenesis. 2010;25(6):595-602.
  • 42. Riso P, Martini D, Visioli F, Martinetti A, Porrini M. Effect of broccoli intake on markers related to oxidative stress and cancer risk in healthy smokers and nonsmokers. Nutrition and cancer. 2009;61(2):232-7.
  • 43. Fahey JW, Haristoy X, Dolan PM, Kensler TW, Scholtus I, Stephenson KK, et al. Sulforaphane inhibits extracellular, intracellular, and antibiotic-resistant strains of Helicobacter pylori and prevents benzo [a] pyrene-induced stomach tumors. Proceedings of the National Academy of Sciences. 2002;99(11):7610-5.
  • 44. Galan MV, Kishan AA, Silverman AL. Oral broccoli sprouts for the treatment of Helicobacter pylori infection: a preliminary report. Digestive diseases and sciences. 2004;49(7):1088-90.
  • 45. Mirmiran P, Bahadoran Z, Ghasemi A, Jeddi S, Azizi F. High-sulforaphane broccoli sprout powder reduces serum nitric oxide metabolites in Helicobacter pylori infected patients. Journal of Functional Foods. 2017;34:356-8.
  • 46. Chang YW, Jang JY, Kim YH, Kim J-W, Shim J-J. The effects of broccoli sprout extract containing sulforaphane on lipid peroxidation and Helicobacter pylori infection in the gastric mucosa. Gut and liver. 2015;9(4):486.
  • 47. Park H-M, Kim J-A, Kwak M-K. Protection against amyloid beta cytotoxicity by sulforaphane: role of the proteasome. Archives of pharmacal research. 2009;32(1):109-15.
  • 48. Kim HV, Kim HY, Ehrlich HY, Choi SY, Kim DJ, Kim Y. Amelioration of Alzheimer’s disease by neuroprotective effect of sulforaphane in animal model. Amyloid. 2013;20(1):7-12.
  • 49. Han JM, Lee YJ, Lee SY, Kim EM, Moon Y, Kim HW, et al. Protective effect of sulforaphane against dopaminergic cell death. Journal of Pharmacology and Experimental Therapeutics. 2007;321(1):249-56.
  • 50. Tarozzi A, Morroni F, Merlicco A, Hrelia S, Angeloni C, Cantelli‐Forti G, et al. Sulforaphane as an inducer of glutathione prevents oxidative stress‐induced cell death in a dopaminergic‐like neuroblastoma cell line. Journal of neurochemistry. 2009;111(5):1161-71.
  • 51. Varma SD, Chandrasekaran K, Kovtun S. Sulforaphane-induced transcription of thioredoxin reductase in lens: possible significance against cataract formation. Clinical Ophthalmology (Auckland, NZ). 2013;7:2091.
  • 52. Kong L, Tanito M, Huang Z, Li F, Zhou X, Zaharia A, et al. Delay of photoreceptor degeneration in tubby mouse by sulforaphane. Journal of neurochemistry. 2007;101(4):1041-52.
  • 53. Tanito M, Masutani H, Kim Y-C, Nishikawa M, Ohira A, Yodoi J. Sulforaphane induces thioredoxin through the antioxidant-responsive element and attenuates retinal light damage in mice. Investigative ophthalmology & visual science. 2005;46(3):979-87.
  • 54. Cotton S, Sharp L, Little J, Brockton N. Glutathione S-transferase polymorphisms and colorectal cancer: a HuGE review. American journal of epidemiology. 2000;151(1):7-32.
  • 55. Lam TK, Gallicchio L, Lindsley K, Shiels M, Hammond E, Tao XG, et al. Cruciferous vegetable consumption and lung cancer risk: a systematic review. Cancer Epidemiology and Prevention Biomarkers. 2009;18(1):184-95.
  • 56. Conaway CC, Getahun SM, Liebes LL, Pusateri DJ, Topham DK, Botero-Omary M, et al. Disposition of glucosinolates and sulforaphane in humans after ingestion of steamed and fresh broccoli. Nutrition and cancer. 2000;38(2):168-78.
  • 57. Higdon JV, Delage B, Williams DE, Dashwood RH. Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis. Pharmacological Research. 2007;55(3):224-36.

Sülforafan, Potansiyel Etki Mekanizması ve Hastalıklarla İlişkisi

Year 2019, Volume: 6 Issue: 1, 153 - 160, 10.02.2019
https://doi.org/10.17681/hsp.396016

Abstract

Bitkilerin
yapısında doğal olarak bulunan biyoaktif bileşenler sağlığın korunması ve
kronik hastalıkların önlemesinde rol oynamaktadır. Direkt olarak genler üzerine
etki edebildikleri gibi, çeşitli moleküllerle konjuge olarak indirekt olarak da
etki göstebilmektedirler. Brokoli ve diğer krusifer grubu sebzelerin (turp,
lahana, karnabahar, brüksel lahanası) hastalıklar üzerine etkisinin
değerlendirildiği çok sayıda çalışma bulunmaktadır. Bu etkilerini yapılarında
bulunan izotiyosiyanatlar aracılığı ile sağladıkları belirtilmektedir. İzotiyosiyanatlar
bitkilerde glukozinolat öncülleri olarak depo edilmekte; hasat, çiğneme, kesme,
doğrama gibi işlemlerle aktivite kazanan mirosinaz enzimi glukozinolatları
izotiyosiyanatlara hidrolize olmaktadır. Sülforafan brokolide bulunan başlıca
izotiyosiyanat olarak öne çıkmaktadır. Organizmada faz II enzimlerini uyarma,
faz I enzimleri ile histon deasetilaz enzim aktivitesini inhibe etme ve
tioredoksin redüktaz enzim ekspresyonunu artırma gibi etki mekanizmaları ile
başta kanser olmak üzere, diyabet, oksidatif stres, helicobacter plyori enfeksiyonu, nörolojik hastalıklar, göz
hastalıkları gibi birçok hastalık üzerinde olumlu sonuçlar doğurduğu yapılan
çalışmalarla ortaya konmuştur. Araştırmalar sonucunda sülforafanın toksik
etkisine rastlanmadığı ve güvenli olduğu sonucuna varılmıştır. Bu çalışmada,
sülforafanın metabolizması, etki mekanizmaları, sağlık üzerine etkileri,
biyoyararlılığı ve bunu etkileyen etmenler ile etkin dozları değerlendirilmiştir.

References

  • 1. Herr I, Büchler MW. Dietary constituents of broccoli and other cruciferous vegetables: implications for prevention and therapy of cancer. Cancer treatment reviews. 2010;36(5):377-83.
  • 2. Bohinc T, Ban SG, Ban D, Stanislav T. Glucosinolates in plant protection strategies: a review. Archives of Biological Sciences. 2012;64(3):821-4.
  • 3. Sulforophane glucosinolate. Monograph. Alternative Medicine Review 2010;15(4):352-60.
  • 4. Fatma Ç, Gülden K. Kanser ve Sülforafan. Beslenme ve Diyet Dergisi. 2013;41(3):266-73.
  • 5. Zhang Y, Talalay P, Cho C-G, Posner GH. A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure. Proceedings of the national academy of sciences. 1992;89(6):2399-403.
  • 6. Conzatti A, Froes F, Schweigert Perry ID, Souza C. Clinical and molecular evidence of the consumption of broccoli, glucoraphanin and sulforaphane in humans. Nutr Hosp. 2014;31(2):559-69.
  • 7. Guerrero-Beltrán CE, Calderón-Oliver M, Pedraza-Chaverri J, Chirino YI. Protective effect of sulforaphane against oxidative stress: recent advances. Experimental and Toxicologic Pathology. 2012;64(5):503-8.
  • 8. Kaufman-Szymczyk A, Majewski G, Lubecka-Pietruszewska K, Fabianowska-Majewska K. The role of sulforaphane in epigenetic mechanisms, including interdependence between histone modification and DNA methylation. International journal of molecular sciences. 2015;16(12):29732-43.
  • 9. Dinkova-Kostova AT, Jenkins SN, Fahey JW, Ye L, Wehage SL, Liby KT, et al. Protection against UV-light-induced skin carcinogenesis in SKH-1 high-risk mice by sulforaphane-containing broccoli sprout extracts. Cancer letters. 2006;240(2):243-52.
  • 10. Guo R, Yuan G, Wang Q. Effect of sucrose and mannitol on the accumulation of health-promoting compounds and the activity of metabolic enzymes in broccoli sprouts. Scientia Horticulturae. 2011;128(3):159-65.
  • 11. Steck SE, Gammon MD, Hebert JR, Wall DE, Zeisel SH. GSTM1, GSTT1, GSTP1, and GSTA1 polymorphisms and urinary isothiocyanate metabolites following broccoli consumption in humans. The Journal of nutrition. 2007;137(4):904-9.
  • 12. Elbarbry F, Elrody N. Potential health benefits of sulforaphane: a review of the experimental, clinical and epidemiological evidences and underlying mechanisms. Journal of Medicinal Plants Research. 2011;5(4):473-84.
  • 13. Kensler TW, Egner PA, Agyeman AS, Visvanathan K, Groopman JD, Chen J-G, et al. Keap1–nrf2 signaling: a target for cancer prevention by sulforaphane. Natural Products in Cancer Prevention and Therapy: Springer; 2012. p. 163-77.
  • 14. Kelsey NA, Wilkins HM, Linseman DA. Nutraceutical antioxidants as novel neuroprotective agents. Molecules. 2010;15(11):7792-814.15. Wu X, Zhou Q-h, Xu K. Are isothiocyanates potential anti-cancer drugs? Acta Pharmacologica Sinica. 2009;30(5):501-12.
  • 15. Wu X, Zhou Q-h, Xu K. Are isothiocyanates potential anti-cancer drugs? Acta Pharmacologica Sinica. 2009;30(5):501-12.
  • 16. Fimognari C, Lenzi M, Hrelia P. Chemoprevention of cancer by isothiocyanates and anthocyanins: mechanisms of action and structure-activity relationship. Current medicinal chemistry. 2008;15(5):440-7.
  • 17. Bassett SA, Barnett MP. The role of dietary histone deacetylases (HDACs) inhibitors in health and disease. Nutrients. 2014;6(10):4273-301.
  • 18. Jeong W-S, Kim I-W, Hu R, Kong A-NT. Modulatory properties of various natural chemopreventive agents on the activation of NF-κB signaling pathway. Pharmaceutical research. 2004;21(4):661-70.
  • 19. Bertl E, Bartsch H, Gerhäuser C. Inhibition of angiogenesis and endothelial cell functions are novel sulforaphane-mediated mechanisms in chemoprevention. Molecular cancer therapeutics. 2006;5(3):575-85.
  • 20. Burke-Gaffney A, Callister ME, Nakamura H. Thioredoxin: friend or foe in human disease? Trends in pharmacological sciences. 2005;26(8):398-404.21.
  • 21. Forouzanfar MH, Afshin A, Alexander LT, Anderson HR, Bhutta ZA, Biryukov S, et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. The Lancet. 2016;388(10053):1659-724.
  • 22. Latté KP, Appel K-E, Lampen A. Health benefits and possible risks of broccoli–an overview. Food and Chemical Toxicology. 2011;49(12):3287-309.23. Wattenberg LW. Inhibition of Carcinogenic Effects of Polycyclic Hydrocarbons by Benzyl Isothiocyanate and Related Compounds 2. Journal of the National Cancer Institute. 1977;58(2):395-8.
  • 23. Wattenberg LW. Inhibition of Carcinogenic Effects of Polycyclic Hydrocarbons by Benzyl Isothiocyanate and Related Compounds 2. Journal of the National Cancer Institute. 1977;58(2):395-8.
  • 24. Singh SV, Singh K. Cancer chemoprevention with dietary isothiocyanates mature for clinical translational research. Carcinogenesis. 2012;33(10):1833-42.25.
  • 25. Li Y, Zhang T, Korkaya H, Liu S, Lee H-F, Newman B, et al. Sulforaphane, a dietary component of broccoli/broccoli sprouts, inhibits breast cancer stem cells. Clinical Cancer Research. 2010;16(9):2580-90.
  • 26. Park SY, Kim GY, Bae S-J, Yoo YH, Choi YH. Induction of apoptosis by isothiocyanate sulforaphane in human cervical carcinoma HeLa and hepatocarcinoma HepG2 cells through activation of caspase-3. Oncology reports. 2007;18(1):181-8.
  • 27. Rudolf E, Andělová H, Červinka M. Activation of several concurrent proapoptic pathways by sulforaphane in human colon cancer cells SW620. Food and Chemical Toxicology. 2009;47(9):2366-73.
  • 28. Kensler TW, Chen J-G, Egner PA, Fahey JW, Jacobson LP, Stephenson KK, et al. Effects of glucosinolate-rich broccoli sprouts on urinary levels of aflatoxin-DNA adducts and phenanthrene tetraols in a randomized clinical trial in He Zuo township, Qidong, People's Republic of China. Cancer Epidemiology and Prevention Biomarkers. 2005;14(11):2605-13.
  • 29. Mirmiran P, Bahadoran Z, Hosseinpanah F, Keyzad A, Azizi F. Effects of broccoli sprout with high sulforaphane concentration on inflammatory markers in type 2 diabetic patients: A randomized double-blind placebo-controlled clinical trial. Journal of Functional Foods. 2012;4(4):837-41.
  • 30. Bahadoran Z, Mirmiran P, Hosseinpanah F, Hedayati M, Hosseinpour-Niazi S, Azizi F. Broccoli sprouts reduce oxidative stress in type 2 diabetes: a randomized double-blind clinical trial. European journal of clinical nutrition. 2011;65(8):972-7.
  • 31. Bahadoran Z, Tohidi M, Nazeri P, Mehran M, Azizi F, Mirmiran P. Effect of broccoli sprouts on insulin resistance in type 2 diabetic patients: a randomized double-blind clinical trial. International journal of food sciences and nutrition. 2012;63(7):767-71.
  • 32. Fukami K, Matsui T, Yamagishi S. Sulforaphane inhibits formation of advanced glycation end products in vitro. Diabetes Frontier Online. 2014;1:e1-e001.
  • 33. Kajikawa M, Nakashima A, Fujimura N, Maruhashi T, Iwamoto Y, Iwamoto A, et al. Ratio of serum levels of AGEs to soluble form of RAGE is a predictor of endothelial function. Diabetes Care. 2015;38(1):119-25.
  • 34. Yamagishi S, Nishino Y, Ojima A, Matsui T, Nishi H. Oral consumption of sulforaphane precursor-rich broccoli supersprouts decreases serum levels of advanced glycation end products in humans. Diabetes Frontier Online. 2015;2:e1-e011.
  • 35. Miao X, Bai Y, Sun W, Cui W, Xin Y, Wang Y, et al. Sulforaphane prevention of diabetes-induced aortic damage was associated with the up-regulation of Nrf2 and its down-stream antioxidants. Nutrition & metabolism. 2012;9(1):84.
  • 36. Negi G, Kumar A, S Sharma S. Nrf2 and NF-κB modulation by sulforaphane counteracts multiple manifestations of diabetic neuropathy in rats and high glucose-induced changes. Current neurovascular research. 2011;8(4):294-304.
  • 37. Bonetto JHP, Fernandes RO, Seolin BGdL, Müller DD, Teixeira RB, Araujo AS, et al. Sulforaphane improves oxidative status without attenuating the inflammatory response or cardiac impairment induced by ischemia–reperfusion in rats. Canadian journal of physiology and pharmacology. 2015;94(5):508-16.
  • 38. Ku S-K, Bae J-S. Antithrombotic activities of sulforaphane via inhibiting platelet aggregation and FIIa/FXa. Archives of pharmacal research. 2014;37(11):1454-63.
  • 39. Zhu H, Jia Z, Strobl JS, Ehrich M, Misra HP, Li Y. Potent induction of total cellular and mitochondrial antioxidants and phase 2 enzymes by cruciferous sulforaphane in rat aortic smooth muscle cells: cytoprotection against oxidative and electrophilic stress. Cardiovascular toxicology. 2008;8(3):115.
  • 40. Zhang X, Shu X-O, Xiang Y-B, Yang G, Li H, Gao J, et al. Cruciferous vegetable consumption is associated with a reduced risk of total and cardiovascular disease mortality. The American journal of clinical nutrition. 2011;94(1), 240-246.
  • 41. Riso P, Martini D, Møller P, Loft S, Bonacina G, Moro M, et al. DNA damage and repair activity after broccoli intake in young healthy smokers. Mutagenesis. 2010;25(6):595-602.
  • 42. Riso P, Martini D, Visioli F, Martinetti A, Porrini M. Effect of broccoli intake on markers related to oxidative stress and cancer risk in healthy smokers and nonsmokers. Nutrition and cancer. 2009;61(2):232-7.
  • 43. Fahey JW, Haristoy X, Dolan PM, Kensler TW, Scholtus I, Stephenson KK, et al. Sulforaphane inhibits extracellular, intracellular, and antibiotic-resistant strains of Helicobacter pylori and prevents benzo [a] pyrene-induced stomach tumors. Proceedings of the National Academy of Sciences. 2002;99(11):7610-5.
  • 44. Galan MV, Kishan AA, Silverman AL. Oral broccoli sprouts for the treatment of Helicobacter pylori infection: a preliminary report. Digestive diseases and sciences. 2004;49(7):1088-90.
  • 45. Mirmiran P, Bahadoran Z, Ghasemi A, Jeddi S, Azizi F. High-sulforaphane broccoli sprout powder reduces serum nitric oxide metabolites in Helicobacter pylori infected patients. Journal of Functional Foods. 2017;34:356-8.
  • 46. Chang YW, Jang JY, Kim YH, Kim J-W, Shim J-J. The effects of broccoli sprout extract containing sulforaphane on lipid peroxidation and Helicobacter pylori infection in the gastric mucosa. Gut and liver. 2015;9(4):486.
  • 47. Park H-M, Kim J-A, Kwak M-K. Protection against amyloid beta cytotoxicity by sulforaphane: role of the proteasome. Archives of pharmacal research. 2009;32(1):109-15.
  • 48. Kim HV, Kim HY, Ehrlich HY, Choi SY, Kim DJ, Kim Y. Amelioration of Alzheimer’s disease by neuroprotective effect of sulforaphane in animal model. Amyloid. 2013;20(1):7-12.
  • 49. Han JM, Lee YJ, Lee SY, Kim EM, Moon Y, Kim HW, et al. Protective effect of sulforaphane against dopaminergic cell death. Journal of Pharmacology and Experimental Therapeutics. 2007;321(1):249-56.
  • 50. Tarozzi A, Morroni F, Merlicco A, Hrelia S, Angeloni C, Cantelli‐Forti G, et al. Sulforaphane as an inducer of glutathione prevents oxidative stress‐induced cell death in a dopaminergic‐like neuroblastoma cell line. Journal of neurochemistry. 2009;111(5):1161-71.
  • 51. Varma SD, Chandrasekaran K, Kovtun S. Sulforaphane-induced transcription of thioredoxin reductase in lens: possible significance against cataract formation. Clinical Ophthalmology (Auckland, NZ). 2013;7:2091.
  • 52. Kong L, Tanito M, Huang Z, Li F, Zhou X, Zaharia A, et al. Delay of photoreceptor degeneration in tubby mouse by sulforaphane. Journal of neurochemistry. 2007;101(4):1041-52.
  • 53. Tanito M, Masutani H, Kim Y-C, Nishikawa M, Ohira A, Yodoi J. Sulforaphane induces thioredoxin through the antioxidant-responsive element and attenuates retinal light damage in mice. Investigative ophthalmology & visual science. 2005;46(3):979-87.
  • 54. Cotton S, Sharp L, Little J, Brockton N. Glutathione S-transferase polymorphisms and colorectal cancer: a HuGE review. American journal of epidemiology. 2000;151(1):7-32.
  • 55. Lam TK, Gallicchio L, Lindsley K, Shiels M, Hammond E, Tao XG, et al. Cruciferous vegetable consumption and lung cancer risk: a systematic review. Cancer Epidemiology and Prevention Biomarkers. 2009;18(1):184-95.
  • 56. Conaway CC, Getahun SM, Liebes LL, Pusateri DJ, Topham DK, Botero-Omary M, et al. Disposition of glucosinolates and sulforaphane in humans after ingestion of steamed and fresh broccoli. Nutrition and cancer. 2000;38(2):168-78.
  • 57. Higdon JV, Delage B, Williams DE, Dashwood RH. Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis. Pharmacological Research. 2007;55(3):224-36.
There are 57 citations in total.

Details

Primary Language Turkish
Subjects Health Care Administration
Journal Section REVIEW ARTICLE
Authors

Emine Koçyiğit 0000-0002-9459-9557

Eda Köksal 0000-0002-7930-9910

Publication Date February 10, 2019
Published in Issue Year 2019 Volume: 6 Issue: 1

Cite

APA Koçyiğit, E., & Köksal, E. (2019). Sülforafan, Potansiyel Etki Mekanizması ve Hastalıklarla İlişkisi. Sağlık Bilimleri Ve Meslekleri Dergisi, 6(1), 153-160. https://doi.org/10.17681/hsp.396016
AMA Koçyiğit E, Köksal E. Sülforafan, Potansiyel Etki Mekanizması ve Hastalıklarla İlişkisi. HSP. February 2019;6(1):153-160. doi:10.17681/hsp.396016
Chicago Koçyiğit, Emine, and Eda Köksal. “Sülforafan, Potansiyel Etki Mekanizması Ve Hastalıklarla İlişkisi”. Sağlık Bilimleri Ve Meslekleri Dergisi 6, no. 1 (February 2019): 153-60. https://doi.org/10.17681/hsp.396016.
EndNote Koçyiğit E, Köksal E (February 1, 2019) Sülforafan, Potansiyel Etki Mekanizması ve Hastalıklarla İlişkisi. Sağlık Bilimleri ve Meslekleri Dergisi 6 1 153–160.
IEEE E. Koçyiğit and E. Köksal, “Sülforafan, Potansiyel Etki Mekanizması ve Hastalıklarla İlişkisi”, HSP, vol. 6, no. 1, pp. 153–160, 2019, doi: 10.17681/hsp.396016.
ISNAD Koçyiğit, Emine - Köksal, Eda. “Sülforafan, Potansiyel Etki Mekanizması Ve Hastalıklarla İlişkisi”. Sağlık Bilimleri ve Meslekleri Dergisi 6/1 (February 2019), 153-160. https://doi.org/10.17681/hsp.396016.
JAMA Koçyiğit E, Köksal E. Sülforafan, Potansiyel Etki Mekanizması ve Hastalıklarla İlişkisi. HSP. 2019;6:153–160.
MLA Koçyiğit, Emine and Eda Köksal. “Sülforafan, Potansiyel Etki Mekanizması Ve Hastalıklarla İlişkisi”. Sağlık Bilimleri Ve Meslekleri Dergisi, vol. 6, no. 1, 2019, pp. 153-60, doi:10.17681/hsp.396016.
Vancouver Koçyiğit E, Köksal E. Sülforafan, Potansiyel Etki Mekanizması ve Hastalıklarla İlişkisi. HSP. 2019;6(1):153-60.