Identification of acinar cells of salivary gland in blood fed female ticks (Hyalomma anatolicusm anatolicum) by light microscopy
Year 2020,
Volume: 4 Issue: 3, 119 - 124, 30.12.2020
Mohammad Eslampanah
,
Mohammad Abdigoudarzi
,
Mohammad Hasan Hablolvarid
Abstract
Ticks play an important role in human and veterinary medicine particularly due to their ability to transmit protozoan pathogens. This study was undertaken on salivary gland of tick using histological methods to decrease cost and budget to determine the presence of tick-borne pathogens of medical and veterinary importance. Ticks have been proved as carrier or vector of pathogenic protozoa by separating salivary gland and using histological methods. This study provides the morphological and histological properties of the salivary glands of semi-engorged Hyalomma anatolicum anatolicum females. Unfed ticks solely were placed on cattle’s ear for feeding and females were collected, and placed in glass vials containing 70% ethanol. Collected ticks were studied and identified morphologically. Dorsal exoskeleton removed with a scalpel and salivary glands were separated by suitable forceps. Then Salivary glands were fixed in 10% formalin for further studies by light microscopy. Samples were stained with hematoxylin-eosin (H&E) for investigation under light microscope. The histological results show that the glandular tissue in females is combined with a system of ducts and the salivary glands of H. a. anatolicum consisted of three types of acinus (acinus I, II and III). The type I acinus was agranular and showed slight morphological changes during feeding. There were five granular cell types in the type II acinus, and three granular cell types in type III acinus. Data achieved here will help in understanding of the cellular morphology and general histology of these organs in this specie, preparing important information for the creation of scientific bases which will contribute to the development of more specific and efficient methods of control.
Supporting Institution
Razi Vaccine and Serum Research Institute
Project Number
2-18-18-92113
Thanks
This study was supported by a project of Razi Institute and Education and Research Deputy of Jihad-Agriculture Ministry with the grant No. 2-18-18-92113.
References
- Aksan, A., Hubel, A., & Bischof, J. C. (2009). Frontiers in biotransport: water transport and hydration. Journal of Biomechanical Engineering 131(7), 074004.
- Alexandre, L. (2001). Ultrastructural and histochemical study of the salivary glands of Aplysia depilans (Mollusca, Opisthobranchia). Acta Zoologica 82(3), 201-212.
- Aeschliman, A., Brossard, M., Tilman, H., & Rutti, B. (1990). A survey of tick vaccines. Journal of Animal Research and Development, 32(2), 52-73.
- Apanaskevich, D. A. (2003).Towards a diagnostic view of Hyalomma (Hyalomma) aegyptium (Acari, Ixodidae), Parazitologiia, 37(1), 47-59.
- Ben Said, M., Galai, Y., Mhadhbi M., Jedidi M., de la Fuente J., & Darghouth M. A. (2012). Molecular characterization of Bm86 gene orthologs from Hyalomma excavatum, Hyalomma dromedarii and Hyalomma marginatum argentums and comparison with a vaccine candidate from Hyalomma scupense, Veterinary Parasitology, 190(1-2), 230-240.
- Bior, A. D., Essenberg, R. C., & Sauer, J. R. (2002). Comparison of differentially expressed genes in the salivary glands of male ticks, Amblyomma americanum and Dermacentor andersoni, Insect biochemistry and molecular biology, 32(6),645-655.
- Bowman, A. S., & Sauer, J. R. (2004). Tick salivary glands: function, physiology and future, Parasitology, 129(S1), S67-S81.
- Chudzinski-Tavassi, A. M., De-Sá-Júnior, P. L., Simons S. M., Maria, D. A., de Souza Ventura. J., Batista, I. F., Faria, F., Durães, E., Reis, E. M., & Demasi, M. (2010). A new tick Kunitz type inhibitor, Amblyomin-X, induces tumor cell death by modulating genes related to the cell cycle and targeting the ubiquitin-proteasome system, Toxicon, 56(7), 1145-1154.
- El-Kady, G. A., Khalil, G. M., Shoukry, A., & Diab, F. M., (2001). Observations on the structure and histology of the female genital system of the cattle tick Boophilus annulatus (Say), Journal of the Egyptian. Society of Parasitology. 31(2), 563-574.
- Nodari, E. F., Roma, G. C., Furquim, K. C., De Oliveira, P. R., Bechara, G. H., & Camargo-Mathias, M. I. (2012). Degenerative process and cell death in salivary glands of Rhipicephalus sanguineus (Latreille, 1806) (Acari: Ixodidae) semi-engorged female exposed to the acaricide permethrin. Microscopy Research and Technique, 75(8), 1012-1018.
- Godwin., P. K., & Hedimbi, M. (2017). Pathophysiological effects of Neem (Azadirachta indica) derivatives to Rhipicephalus appendiculatus, the tick vector for Theileriosis (East Coast Fever), Journal of Entomology and Nematology, 9(3), 14-22.
- Goddard, J., & Varela-Stokes, A. S. (2009). Role of the lone star tick, Amblyomma americanum (L.), in human and animal diseases. Veterinary Parasitology, 160(1-2), 1-12.
- Hall-Mendelin, S., Craig, S. B., Hall, R. A., Donoghue, P. O., Atwell, R. B., Tulsiani, S. M., & Graham, G. C. (2011). Tick paralysis in Australia caused by Ixodes holocyclus Neumann. Annals of Tropical Medicine & Parasitology 105(2), 95–106.
- Hughes, M. R. (2003). Regulation of salt gland, gut and kidney interactions. Comparative Biochemistry and Physiology - Part A: Molecular & Integrative Physiology, 136(3), 507-524.
- Kazimírová, M. & Štibrániová, I. (2013). Tick salivary compounds: their role in modulation of host defenses and pathogen transmission. Frontiers in Cellular and Infection Microbiology, 3, 43.
- Kluck, G. E. G., Atella, G. C., & Folly, E. (2010). Phospholipids composition in the salivary glands of the cattle tick Rhipicephalus (Boophilus) microplus, Chemistry and Physics of Lipids, 163, S35-S43.
- Lombaert, I. M. A., Knox, S. M., & Hoffman, M. P. (2011). Salivary gland progenitor cell biology provides a rationale for therapeutic salivary gland regeneration. Oral Diseases, 17, 445-449.
- Nawale, L., Dubey, P., Chaudhari, B., Sarkar, D., & Prabhune, A. (2017). Anti-proliferative effect of novel primary cetyl alcohol derived sophorolipids against human cervical cancer cells HeLa, PLoS ONE, 12(4), e0174241.
- Nunes, E. T., Mathias, M. I., & Bechara, G. H. (2006). Structural and cytochemical changes in the salivary glands of the Rhipicephalus (Boophilus) microplus (CANESTRINI, 1887) (Acari: Ixodidae) tick female during feeding. Veterinary Parasitology, 140(1-2), 114-123.
- Randolph, S. E. (2011). Transmission of tick-borne pathogens between co-feeding ticks: Milan Labuda's enduring paradigm, Ticks Tick Borne Dis, 2(4),179-82.
- Šimo, L., Kazimirova, M., Richardson, J., & Bonnet, S. I. (2017). The essential role of tick salivary glands and saliva in tick feeding and pathogen transmission. Frontiers in Cellular and Infection Microbiology, 7, 281.
- Simons, S. M., Sá Júnior, P. L., Faria, F., Batista, I. F. C., Barros-Batesti, D. M., Labruna, M. B., & Chudzinski-Tavassi A. M. (2011). The action of Amblyomma cajennense tick salivain compounds of hemostatic system and cytotoxicity in tumor celllines. Biomedicine & Pharmacotherapy, 65(6),443-450.
- Vancová, I., Hajnická, V., Slovák, M., Kocáková, P., Paesen, G. C., & Nuttall, P. A. (2010). Evasin-3-like anti-chemokine activity in salivary gland extracts of ixodid ticks during blood-feeding: a new target for tick control. Parasite Immunology, 32(6),460-463.
- Zhou, J., Zhou, Y., Cao, J., Zhang, H., & Yu, Y. (2013). Distinctive microRNA profiles in the salivary glands of Haemaphysalis longicornis related to tick blood-feeding. Experimental and Applied Acarology, 59(3),339-349.
Year 2020,
Volume: 4 Issue: 3, 119 - 124, 30.12.2020
Mohammad Eslampanah
,
Mohammad Abdigoudarzi
,
Mohammad Hasan Hablolvarid
Project Number
2-18-18-92113
References
- Aksan, A., Hubel, A., & Bischof, J. C. (2009). Frontiers in biotransport: water transport and hydration. Journal of Biomechanical Engineering 131(7), 074004.
- Alexandre, L. (2001). Ultrastructural and histochemical study of the salivary glands of Aplysia depilans (Mollusca, Opisthobranchia). Acta Zoologica 82(3), 201-212.
- Aeschliman, A., Brossard, M., Tilman, H., & Rutti, B. (1990). A survey of tick vaccines. Journal of Animal Research and Development, 32(2), 52-73.
- Apanaskevich, D. A. (2003).Towards a diagnostic view of Hyalomma (Hyalomma) aegyptium (Acari, Ixodidae), Parazitologiia, 37(1), 47-59.
- Ben Said, M., Galai, Y., Mhadhbi M., Jedidi M., de la Fuente J., & Darghouth M. A. (2012). Molecular characterization of Bm86 gene orthologs from Hyalomma excavatum, Hyalomma dromedarii and Hyalomma marginatum argentums and comparison with a vaccine candidate from Hyalomma scupense, Veterinary Parasitology, 190(1-2), 230-240.
- Bior, A. D., Essenberg, R. C., & Sauer, J. R. (2002). Comparison of differentially expressed genes in the salivary glands of male ticks, Amblyomma americanum and Dermacentor andersoni, Insect biochemistry and molecular biology, 32(6),645-655.
- Bowman, A. S., & Sauer, J. R. (2004). Tick salivary glands: function, physiology and future, Parasitology, 129(S1), S67-S81.
- Chudzinski-Tavassi, A. M., De-Sá-Júnior, P. L., Simons S. M., Maria, D. A., de Souza Ventura. J., Batista, I. F., Faria, F., Durães, E., Reis, E. M., & Demasi, M. (2010). A new tick Kunitz type inhibitor, Amblyomin-X, induces tumor cell death by modulating genes related to the cell cycle and targeting the ubiquitin-proteasome system, Toxicon, 56(7), 1145-1154.
- El-Kady, G. A., Khalil, G. M., Shoukry, A., & Diab, F. M., (2001). Observations on the structure and histology of the female genital system of the cattle tick Boophilus annulatus (Say), Journal of the Egyptian. Society of Parasitology. 31(2), 563-574.
- Nodari, E. F., Roma, G. C., Furquim, K. C., De Oliveira, P. R., Bechara, G. H., & Camargo-Mathias, M. I. (2012). Degenerative process and cell death in salivary glands of Rhipicephalus sanguineus (Latreille, 1806) (Acari: Ixodidae) semi-engorged female exposed to the acaricide permethrin. Microscopy Research and Technique, 75(8), 1012-1018.
- Godwin., P. K., & Hedimbi, M. (2017). Pathophysiological effects of Neem (Azadirachta indica) derivatives to Rhipicephalus appendiculatus, the tick vector for Theileriosis (East Coast Fever), Journal of Entomology and Nematology, 9(3), 14-22.
- Goddard, J., & Varela-Stokes, A. S. (2009). Role of the lone star tick, Amblyomma americanum (L.), in human and animal diseases. Veterinary Parasitology, 160(1-2), 1-12.
- Hall-Mendelin, S., Craig, S. B., Hall, R. A., Donoghue, P. O., Atwell, R. B., Tulsiani, S. M., & Graham, G. C. (2011). Tick paralysis in Australia caused by Ixodes holocyclus Neumann. Annals of Tropical Medicine & Parasitology 105(2), 95–106.
- Hughes, M. R. (2003). Regulation of salt gland, gut and kidney interactions. Comparative Biochemistry and Physiology - Part A: Molecular & Integrative Physiology, 136(3), 507-524.
- Kazimírová, M. & Štibrániová, I. (2013). Tick salivary compounds: their role in modulation of host defenses and pathogen transmission. Frontiers in Cellular and Infection Microbiology, 3, 43.
- Kluck, G. E. G., Atella, G. C., & Folly, E. (2010). Phospholipids composition in the salivary glands of the cattle tick Rhipicephalus (Boophilus) microplus, Chemistry and Physics of Lipids, 163, S35-S43.
- Lombaert, I. M. A., Knox, S. M., & Hoffman, M. P. (2011). Salivary gland progenitor cell biology provides a rationale for therapeutic salivary gland regeneration. Oral Diseases, 17, 445-449.
- Nawale, L., Dubey, P., Chaudhari, B., Sarkar, D., & Prabhune, A. (2017). Anti-proliferative effect of novel primary cetyl alcohol derived sophorolipids against human cervical cancer cells HeLa, PLoS ONE, 12(4), e0174241.
- Nunes, E. T., Mathias, M. I., & Bechara, G. H. (2006). Structural and cytochemical changes in the salivary glands of the Rhipicephalus (Boophilus) microplus (CANESTRINI, 1887) (Acari: Ixodidae) tick female during feeding. Veterinary Parasitology, 140(1-2), 114-123.
- Randolph, S. E. (2011). Transmission of tick-borne pathogens between co-feeding ticks: Milan Labuda's enduring paradigm, Ticks Tick Borne Dis, 2(4),179-82.
- Šimo, L., Kazimirova, M., Richardson, J., & Bonnet, S. I. (2017). The essential role of tick salivary glands and saliva in tick feeding and pathogen transmission. Frontiers in Cellular and Infection Microbiology, 7, 281.
- Simons, S. M., Sá Júnior, P. L., Faria, F., Batista, I. F. C., Barros-Batesti, D. M., Labruna, M. B., & Chudzinski-Tavassi A. M. (2011). The action of Amblyomma cajennense tick salivain compounds of hemostatic system and cytotoxicity in tumor celllines. Biomedicine & Pharmacotherapy, 65(6),443-450.
- Vancová, I., Hajnická, V., Slovák, M., Kocáková, P., Paesen, G. C., & Nuttall, P. A. (2010). Evasin-3-like anti-chemokine activity in salivary gland extracts of ixodid ticks during blood-feeding: a new target for tick control. Parasite Immunology, 32(6),460-463.
- Zhou, J., Zhou, Y., Cao, J., Zhang, H., & Yu, Y. (2013). Distinctive microRNA profiles in the salivary glands of Haemaphysalis longicornis related to tick blood-feeding. Experimental and Applied Acarology, 59(3),339-349.