Year 2019, Volume 48 , Issue 6, Pages 1778 - 1791 2019-12-08

Harmonic functions with missing coefficients

Jacek DZİOK [1]


In the paper we introduce the classes of functions with missing coefficients defined by generalized Ruscheweyh derivatives and we show that they can be presented as dual sets. Moreover, by using extreme points theory, we obtain estimations of classical convex functionals on the defined classes of functions. Some applications of the main results are also considered.
Harmonic functions, Subordination, Missing coefficients, Ruscheweyh operator, Dual sets, Correlated coefficients
  • [1] O. Ahuja, Connections between various subclasses of planar harmonic mappings involving hypergeometric functions, Appl. Math. Comput. 198, 305–316, 2008.
  • [2] O.P. Ahuja and J.M. Jahangiri, Certain multipliers of univalent harmonic functions, Appl. Math. Lett. 18, 1319–1324, 2005.
  • [3] M. Darus and K. Al-Shaqsi, K. On certain subclass of harmonic univalent functions, J. Anal. Appl. 6, 17–28, 2008.
  • [4] J. Dziok, On Janowski harmonic functions, J. Appl. Anal. 21, 99–107, 2015.
  • [5] J. Dziok, Ruscheweyh-type harmonic functions with correlated coefficients, Filomat, 33 (12), 2019.
  • [6] J. Dziok, J.M. Jahangiri, and H. Silverman, Harmonic functions with varying coefficients, J. Inequal. Appl. 139, 2016.
  • [7] J. Dziok, M. Darus, J. Sokół, and T. Bulboaca, Generalizations of starlike harmonic functions, C. R. Math. Acad. Sci. Paris, 354, 13–18, 2016.
  • [8] D.J. Hallenbeck and T.H. MacGregor, Linear Problems and Convexity Techniques in Geometric Function Theory, Pitman Advanced Publishing Program, Boston, Pitman, 1984.
  • [9] J.M. Jahangiri, Harmonic functions starlike in the unit disk, J. Math. Anal. Appl. 235, 470–477, 1999.
  • [10] J.M. Jahangiri, G. Murugusundaramoorthy, and K. Vijaya, Starlikeness of harmonic functions defined by Ruscheweyh derivatives, J. Indian Acad. Math. 26, 191–200, 2004.
  • [11] J.M. Jahangiri and H. Silverman, Harmonic univalent functions with varying arguments, Int. J. Appl. Math. 8, 267–275, 2002.
  • [12] W. Janowski, Some extremal problems for certain families of analytic functions I, Ann. Polon. Math. 28, 297–326, 1973.
  • [13] S.Y. Karpuzogullari, M. Öztürk, and M. Yamankaradeniz, A subclass of harmonic univalent functions with negative coefficients, Appl. Math. Comput. 142 (2-3), 469– 476, 2003.
  • [14] M. Krein and D. Milman, On the extreme points of regularly convex sets, Studia Mathematica 9, 133–138, 1940.
  • [15] H. Lewy, On the non-vanishing of the Jacobian in certain one-to-one mappings, Bull. Amer. Math. Soc. 42, 689–692, 1936.
  • [16] P. Montel, Sur les families de functions analytiques qui admettent des valeurs exceptionelles dans un domaine, Ann. Sci. Ecole Norm. Sup. 23, 487–535, 1912.
  • [17] G. Murugusundaramoorthy and K. Vijaya, On certain classes of harmonic functions involving Ruscheweyh derivatives, Bull. Calcutta Math. Soc. 96, 99–108, 2004.
  • [18] M. Öztürk, S. Yalçin, and M. Yamankaradeniz, Convex subclass of harmonic starlike functions, Appl. Math. Comput. 154, 449–459, 2004.
  • [19] S. Ruscheweyh, Convolutions in geometric function theory, in: Sem. Math. Sup. 83, Les Presses del’Université de Montréal, 1982.
  • [20] S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math Soc. 49, 109–115, 1975.
  • [21] H. Silverman, Harmonic univalent functions with negative coefficients, J. Math. Anal. Appl. 220, 283–289, 1998.
  • [22] S. Yalçın, S.B. Joshi, and E. Yaşar, On certain subclass of harmonic univalent functions defined by a generalized Ruscheweyh derivatives operator, Appl. Math. Sci. (Ruse) 4, 327–336, 2010.
  • [23] S. Yalçın and M. Öztürk, Harmonic functions starlike of the complex order, Mat. Vesnik 58, 7–11, 2006.
  • [24] S. Yalçın, M. Öztürk, and M. Yamankaradeniz, On the subclass of Salagean-type harmonic univalent functions, J. Inequal. Pure Appl. Math. 8, Art. 54, 9 pp., 2007.
Primary Language en
Subjects Mathematics
Journal Section Mathematics
Authors

Orcid: 0000-0003-1482-1080
Author: Jacek DZİOK (Primary Author)
Institution: University of Rzeszów
Country: Poland


Dates

Publication Date : December 8, 2019

Bibtex @research article { hujms480648, journal = {Hacettepe Journal of Mathematics and Statistics}, issn = {2651-477X}, eissn = {2651-477X}, address = {}, publisher = {Hacettepe University}, year = {2019}, volume = {48}, pages = {1778 - 1791}, doi = {10.15672/HJMS.2018.637}, title = {Harmonic functions with missing coefficients}, key = {cite}, author = {DZİOK, Jacek} }
APA DZİOK, J . (2019). Harmonic functions with missing coefficients. Hacettepe Journal of Mathematics and Statistics , 48 (6) , 1778-1791 . DOI: 10.15672/HJMS.2018.637
MLA DZİOK, J . "Harmonic functions with missing coefficients". Hacettepe Journal of Mathematics and Statistics 48 (2019 ): 1778-1791 <https://dergipark.org.tr/en/pub/hujms/issue/50516/480648>
Chicago DZİOK, J . "Harmonic functions with missing coefficients". Hacettepe Journal of Mathematics and Statistics 48 (2019 ): 1778-1791
RIS TY - JOUR T1 - Harmonic functions with missing coefficients AU - Jacek DZİOK Y1 - 2019 PY - 2019 N1 - doi: 10.15672/HJMS.2018.637 DO - 10.15672/HJMS.2018.637 T2 - Hacettepe Journal of Mathematics and Statistics JF - Journal JO - JOR SP - 1778 EP - 1791 VL - 48 IS - 6 SN - 2651-477X-2651-477X M3 - doi: 10.15672/HJMS.2018.637 UR - https://doi.org/10.15672/HJMS.2018.637 Y2 - 2018 ER -
EndNote %0 Hacettepe Journal of Mathematics and Statistics Harmonic functions with missing coefficients %A Jacek DZİOK %T Harmonic functions with missing coefficients %D 2019 %J Hacettepe Journal of Mathematics and Statistics %P 2651-477X-2651-477X %V 48 %N 6 %R doi: 10.15672/HJMS.2018.637 %U 10.15672/HJMS.2018.637
ISNAD DZİOK, Jacek . "Harmonic functions with missing coefficients". Hacettepe Journal of Mathematics and Statistics 48 / 6 (December 2019): 1778-1791 . https://doi.org/10.15672/HJMS.2018.637
AMA DZİOK J . Harmonic functions with missing coefficients. Hacettepe Journal of Mathematics and Statistics. 2019; 48(6): 1778-1791.
Vancouver DZİOK J . Harmonic functions with missing coefficients. Hacettepe Journal of Mathematics and Statistics. 2019; 48(6): 1791-1778.