Year 2025,
Volume: 54 Issue: 4, 1442 - 1457, 29.08.2025
Umutcan Erdur
,
Nihat Gökhan Göğüş
References
-
[1] C. D. Aliprantis and O. Burkinshaw, Positive Operators, Springer, 2006.
-
[2] R. R. Coifman and S. Semmes, Interpolation of Banach Spaces, Perron Processes,
and Yang-Mills, Am. J. Math. 115 (2), 243278, 1993.
-
[3] J. B. Conway, A course in Functional Analysis, Springer, 1997.
-
[4] N. Dinculeanu, Vector Measures, Pergamon Press, 1967.
-
[5] D.A. Edwards, Choquet boundary theory for certain spaces of lower semicontinuous
functions, in Function Algebras (Proc. Internat. Sympos. on Function Algebras, Tulane
Univ., 1965 (Birtel, F., ed.)), 300-309, Scott-Foresman, Chicago, Ill., 1966.
-
[6] T.W. Gamelin, Uniform Algebras and Jensen Measures, London Mathematical Society
Lecture Notes Series 32, Cambridge University Press, Cambridge, 1978.
-
[7] L. Lempert, Noncommutative Potential Theory, Analysis Math. 28 (4), 603-627, 2017.
-
[8] M. P. Olson, The selfadjoint operators of a Von Neumann algebra form a conditionally
complete lattice, Proc. Amer. Soc. 28, 537-544, 1971.
-
[9] W. Rudin, Functional Analysis, McGraw-Hill Book Company, New York, 1973.
-
[10] S. Sherman, Order in Operator Algebras, Am. J. Math. 73 (1), 22732, 1951.
-
[11] F. Wikström, Jensen Measures and boundary values of plurisubharmonic functions,
Ark. Mat. 39, 181-200, 2001.
Edwards' Theorem and matrix-valued functions
Year 2025,
Volume: 54 Issue: 4, 1442 - 1457, 29.08.2025
Umutcan Erdur
,
Nihat Gökhan Göğüş
Abstract
We extend several notions such as semi-continuity and Jensen measures for matrix-valued functions. For that purpose, we introduce $\Gamma$-order on noncommutative matrix spaces. Afterward, we generalize the Edwards' Theorem for a noncommutative matrix space by exploiting properties of $\Gamma$-order given on the matrix space which we consider.
Ethical Statement
The authors have no competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Supporting Institution
TUBITAK
References
-
[1] C. D. Aliprantis and O. Burkinshaw, Positive Operators, Springer, 2006.
-
[2] R. R. Coifman and S. Semmes, Interpolation of Banach Spaces, Perron Processes,
and Yang-Mills, Am. J. Math. 115 (2), 243278, 1993.
-
[3] J. B. Conway, A course in Functional Analysis, Springer, 1997.
-
[4] N. Dinculeanu, Vector Measures, Pergamon Press, 1967.
-
[5] D.A. Edwards, Choquet boundary theory for certain spaces of lower semicontinuous
functions, in Function Algebras (Proc. Internat. Sympos. on Function Algebras, Tulane
Univ., 1965 (Birtel, F., ed.)), 300-309, Scott-Foresman, Chicago, Ill., 1966.
-
[6] T.W. Gamelin, Uniform Algebras and Jensen Measures, London Mathematical Society
Lecture Notes Series 32, Cambridge University Press, Cambridge, 1978.
-
[7] L. Lempert, Noncommutative Potential Theory, Analysis Math. 28 (4), 603-627, 2017.
-
[8] M. P. Olson, The selfadjoint operators of a Von Neumann algebra form a conditionally
complete lattice, Proc. Amer. Soc. 28, 537-544, 1971.
-
[9] W. Rudin, Functional Analysis, McGraw-Hill Book Company, New York, 1973.
-
[10] S. Sherman, Order in Operator Algebras, Am. J. Math. 73 (1), 22732, 1951.
-
[11] F. Wikström, Jensen Measures and boundary values of plurisubharmonic functions,
Ark. Mat. 39, 181-200, 2001.