Research Article
BibTex RIS Cite

Year 2025, Volume: 54 Issue: 4, 1442 - 1457, 29.08.2025
https://doi.org/10.15672/hujms.1478167

Abstract

Project Number

123F356

References

  • [1] C. D. Aliprantis and O. Burkinshaw, Positive Operators, Springer, 2006.
  • [2] R. R. Coifman and S. Semmes, Interpolation of Banach Spaces, Perron Processes, and Yang-Mills, Am. J. Math. 115 (2), 243278, 1993.
  • [3] J. B. Conway, A course in Functional Analysis, Springer, 1997.
  • [4] N. Dinculeanu, Vector Measures, Pergamon Press, 1967.
  • [5] D.A. Edwards, Choquet boundary theory for certain spaces of lower semicontinuous functions, in Function Algebras (Proc. Internat. Sympos. on Function Algebras, Tulane Univ., 1965 (Birtel, F., ed.)), 300-309, Scott-Foresman, Chicago, Ill., 1966.
  • [6] T.W. Gamelin, Uniform Algebras and Jensen Measures, London Mathematical Society Lecture Notes Series 32, Cambridge University Press, Cambridge, 1978.
  • [7] L. Lempert, Noncommutative Potential Theory, Analysis Math. 28 (4), 603-627, 2017.
  • [8] M. P. Olson, The selfadjoint operators of a Von Neumann algebra form a conditionally complete lattice, Proc. Amer. Soc. 28, 537-544, 1971.
  • [9] W. Rudin, Functional Analysis, McGraw-Hill Book Company, New York, 1973.
  • [10] S. Sherman, Order in Operator Algebras, Am. J. Math. 73 (1), 22732, 1951.
  • [11] F. Wikström, Jensen Measures and boundary values of plurisubharmonic functions, Ark. Mat. 39, 181-200, 2001.

Edwards' Theorem and matrix-valued functions

Year 2025, Volume: 54 Issue: 4, 1442 - 1457, 29.08.2025
https://doi.org/10.15672/hujms.1478167

Abstract

We extend several notions such as semi-continuity and Jensen measures for matrix-valued functions. For that purpose, we introduce $\Gamma$-order on noncommutative matrix spaces. Afterward, we generalize the Edwards' Theorem for a noncommutative matrix space by exploiting properties of $\Gamma$-order given on the matrix space which we consider.

Ethical Statement

The authors have no competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supporting Institution

TUBITAK

Project Number

123F356

References

  • [1] C. D. Aliprantis and O. Burkinshaw, Positive Operators, Springer, 2006.
  • [2] R. R. Coifman and S. Semmes, Interpolation of Banach Spaces, Perron Processes, and Yang-Mills, Am. J. Math. 115 (2), 243278, 1993.
  • [3] J. B. Conway, A course in Functional Analysis, Springer, 1997.
  • [4] N. Dinculeanu, Vector Measures, Pergamon Press, 1967.
  • [5] D.A. Edwards, Choquet boundary theory for certain spaces of lower semicontinuous functions, in Function Algebras (Proc. Internat. Sympos. on Function Algebras, Tulane Univ., 1965 (Birtel, F., ed.)), 300-309, Scott-Foresman, Chicago, Ill., 1966.
  • [6] T.W. Gamelin, Uniform Algebras and Jensen Measures, London Mathematical Society Lecture Notes Series 32, Cambridge University Press, Cambridge, 1978.
  • [7] L. Lempert, Noncommutative Potential Theory, Analysis Math. 28 (4), 603-627, 2017.
  • [8] M. P. Olson, The selfadjoint operators of a Von Neumann algebra form a conditionally complete lattice, Proc. Amer. Soc. 28, 537-544, 1971.
  • [9] W. Rudin, Functional Analysis, McGraw-Hill Book Company, New York, 1973.
  • [10] S. Sherman, Order in Operator Algebras, Am. J. Math. 73 (1), 22732, 1951.
  • [11] F. Wikström, Jensen Measures and boundary values of plurisubharmonic functions, Ark. Mat. 39, 181-200, 2001.
There are 11 citations in total.

Details

Primary Language English
Subjects Real and Complex Functions (Incl. Several Variables)
Journal Section Mathematics
Authors

Umutcan Erdur 0000-0003-4608-4572

Nihat Gökhan Göğüş 0000-0003-1966-8409

Project Number 123F356
Early Pub Date January 27, 2025
Publication Date August 29, 2025
Submission Date May 3, 2024
Acceptance Date December 12, 2024
Published in Issue Year 2025 Volume: 54 Issue: 4

Cite

APA Erdur, U., & Göğüş, N. G. (2025). Edwards’ Theorem and matrix-valued functions. Hacettepe Journal of Mathematics and Statistics, 54(4), 1442-1457. https://doi.org/10.15672/hujms.1478167
AMA Erdur U, Göğüş NG. Edwards’ Theorem and matrix-valued functions. Hacettepe Journal of Mathematics and Statistics. August 2025;54(4):1442-1457. doi:10.15672/hujms.1478167
Chicago Erdur, Umutcan, and Nihat Gökhan Göğüş. “Edwards’ Theorem and Matrix-Valued Functions”. Hacettepe Journal of Mathematics and Statistics 54, no. 4 (August 2025): 1442-57. https://doi.org/10.15672/hujms.1478167.
EndNote Erdur U, Göğüş NG (August 1, 2025) Edwards’ Theorem and matrix-valued functions. Hacettepe Journal of Mathematics and Statistics 54 4 1442–1457.
IEEE U. Erdur and N. G. Göğüş, “Edwards’ Theorem and matrix-valued functions”, Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 4, pp. 1442–1457, 2025, doi: 10.15672/hujms.1478167.
ISNAD Erdur, Umutcan - Göğüş, Nihat Gökhan. “Edwards’ Theorem and Matrix-Valued Functions”. Hacettepe Journal of Mathematics and Statistics 54/4 (August2025), 1442-1457. https://doi.org/10.15672/hujms.1478167.
JAMA Erdur U, Göğüş NG. Edwards’ Theorem and matrix-valued functions. Hacettepe Journal of Mathematics and Statistics. 2025;54:1442–1457.
MLA Erdur, Umutcan and Nihat Gökhan Göğüş. “Edwards’ Theorem and Matrix-Valued Functions”. Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 4, 2025, pp. 1442-57, doi:10.15672/hujms.1478167.
Vancouver Erdur U, Göğüş NG. Edwards’ Theorem and matrix-valued functions. Hacettepe Journal of Mathematics and Statistics. 2025;54(4):1442-57.