Categorical isomorphisms for Hopf braces
Year 2025,
Volume: 54 Issue: 5, 1872 - 1896, 29.10.2025
J.m. Fernadez Vılaboa
,
Ramon Gonzalez Rodriguez
,
Brais Ramos Pérez
Abstract
In this paper, we introduce the category of brace triples in a braided monoidal setting and prove that it is isomorphic to the category of s-Hopf braces, which are a generalization of cocommutative Hopf braces. After that, we obtain a categorical isomorphism between the category of finite cocommutative Hopf braces and a certain subcategory of the category of cocommutative post-Hopf algebras, which supposes an expansion to the braided monoidal setting of the equivalence obtained for the category of vector spaces over a field $\mathbb{K}$ by Y. Li, Y. Sheng and R. Tang.
Project Number
PID2020-115155GB-I00
References
-
[1] J.N. Alonso Álvarez, J.M. Fernández Vilaboa and R. González Rodríguez, On the
(co)-commutativity class of a Hopf algebra and crossed products in a braided category,
Comm. Algebra 29 (12), 5857-5878, 2001.
-
[2] I. Angiono, C. Galindo and L. Vendramin, Hopf braces and Yang-Baxter operators,
Proc. Amer. Math. Soc. 145 (5), 1981-1995, 2017.
-
[3] C. Bai, L. Guo, Y. Sheng and R. Tang, Post-groups, (Lie-)Butcher groups and the
YangBaxter equation, Math. Ann. 388 (3), 1-41, 2024.
-
[4] R.J. Baxter, Partition function of the eight-vertex lattice model, Ann. Physics 70 (1),
193-228, 1972.
-
[5] V.G. Drinfeld, On some unsolved problems in quantum group theory, in: Quantum
groups, Leningrad, 1990, 1-8, Springer, Berlin, 1992.
-
[6] J.M. Fernández Vilaboa, R. González Rodríguez, B. Ramos Pérez and A.B. Rodríguez
Raposo, Modules for invertible 1-cocycles, Turkish J. Math. 48 (2), 248-266, 2024.
-
[7] R. González Rodríguez, The fundamental theorem of Hopf modules for Hopf braces,
Linear Multilinear Algebra 70 (20), 5146-5156, 2022.
-
[8] R. González Rodríguez and A.B. Rodríguez Raposo, Categorical equivalences for Hopf
trusses and their modules, arXiv: 2312.06520 [math.RA].
-
[9] L. Guarnieri and L. Vendramin, Skew braces and the YangBaxter equation, Math.
Comp. 86 (307), 2519-2534, 2017.
-
[10] J.A. Guccione, J.J. Guccione and L. Vendramin, YangBaxter operators in symmetric
categories, Comm. Algebra 46 (7), 2811-2845, 2018.
-
[11] A. Joyal and R. Street, Braided monoidal categories, Macquarie Univ. Reports 860081,
1986.
-
[12] A. Joyal and R. Street, Braided tensor categories, Adv. Math. 102 (1), 20-78, 1993.
-
[13] C. Kassel, Quantum Groups, Springer-Verlag, 1995.
-
[14] Y. Li, Y. Sheng and R. Tang, Post-Hopf algebras, relative Rota-Baxter operators and
solutions of the Yang-Baxter equation, J. Noncommut. Geom. 18 (2), 605-630, 2024.
-
[15] S. Mac Lane, Categories for the working mathematician, Springer-Verlag, 1998.
-
[16] S. Majid, Transmutation Theory and Rank for Quantum Braided Groups, Math. Proc.
Cambridge Philos. Soc. 113 (1), 45-70, 1993.
-
[17] W. Rump, Braces, radical rings, and the quantum YangBaxter equation, J. Algebra
307 (1), 153-170, 2007.
-
[18] P. Schauenburg, On the braiding on a Hopf algebra in a braided category, New York
J. Math. 4, 259-263, 1998.
-
[19] C.N. Yang, Some exact results for the many-body problem in one dimension with
repulsive delta-function interaction, Phys. Rev. Lett. 19 (23), 1312-1315, 1967.
Year 2025,
Volume: 54 Issue: 5, 1872 - 1896, 29.10.2025
J.m. Fernadez Vılaboa
,
Ramon Gonzalez Rodriguez
,
Brais Ramos Pérez
Project Number
PID2020-115155GB-I00
References
-
[1] J.N. Alonso Álvarez, J.M. Fernández Vilaboa and R. González Rodríguez, On the
(co)-commutativity class of a Hopf algebra and crossed products in a braided category,
Comm. Algebra 29 (12), 5857-5878, 2001.
-
[2] I. Angiono, C. Galindo and L. Vendramin, Hopf braces and Yang-Baxter operators,
Proc. Amer. Math. Soc. 145 (5), 1981-1995, 2017.
-
[3] C. Bai, L. Guo, Y. Sheng and R. Tang, Post-groups, (Lie-)Butcher groups and the
YangBaxter equation, Math. Ann. 388 (3), 1-41, 2024.
-
[4] R.J. Baxter, Partition function of the eight-vertex lattice model, Ann. Physics 70 (1),
193-228, 1972.
-
[5] V.G. Drinfeld, On some unsolved problems in quantum group theory, in: Quantum
groups, Leningrad, 1990, 1-8, Springer, Berlin, 1992.
-
[6] J.M. Fernández Vilaboa, R. González Rodríguez, B. Ramos Pérez and A.B. Rodríguez
Raposo, Modules for invertible 1-cocycles, Turkish J. Math. 48 (2), 248-266, 2024.
-
[7] R. González Rodríguez, The fundamental theorem of Hopf modules for Hopf braces,
Linear Multilinear Algebra 70 (20), 5146-5156, 2022.
-
[8] R. González Rodríguez and A.B. Rodríguez Raposo, Categorical equivalences for Hopf
trusses and their modules, arXiv: 2312.06520 [math.RA].
-
[9] L. Guarnieri and L. Vendramin, Skew braces and the YangBaxter equation, Math.
Comp. 86 (307), 2519-2534, 2017.
-
[10] J.A. Guccione, J.J. Guccione and L. Vendramin, YangBaxter operators in symmetric
categories, Comm. Algebra 46 (7), 2811-2845, 2018.
-
[11] A. Joyal and R. Street, Braided monoidal categories, Macquarie Univ. Reports 860081,
1986.
-
[12] A. Joyal and R. Street, Braided tensor categories, Adv. Math. 102 (1), 20-78, 1993.
-
[13] C. Kassel, Quantum Groups, Springer-Verlag, 1995.
-
[14] Y. Li, Y. Sheng and R. Tang, Post-Hopf algebras, relative Rota-Baxter operators and
solutions of the Yang-Baxter equation, J. Noncommut. Geom. 18 (2), 605-630, 2024.
-
[15] S. Mac Lane, Categories for the working mathematician, Springer-Verlag, 1998.
-
[16] S. Majid, Transmutation Theory and Rank for Quantum Braided Groups, Math. Proc.
Cambridge Philos. Soc. 113 (1), 45-70, 1993.
-
[17] W. Rump, Braces, radical rings, and the quantum YangBaxter equation, J. Algebra
307 (1), 153-170, 2007.
-
[18] P. Schauenburg, On the braiding on a Hopf algebra in a braided category, New York
J. Math. 4, 259-263, 1998.
-
[19] C.N. Yang, Some exact results for the many-body problem in one dimension with
repulsive delta-function interaction, Phys. Rev. Lett. 19 (23), 1312-1315, 1967.