Research Article
BibTex RIS Cite

Categorical isomorphisms for Hopf braces

Year 2025, Volume: 54 Issue: 5, 1872 - 1896, 29.10.2025
https://doi.org/10.15672/hujms.1511335

Abstract

In this paper, we introduce the category of brace triples in a braided monoidal setting and prove that it is isomorphic to the category of s-Hopf braces, which are a generalization of cocommutative Hopf braces. After that, we obtain a categorical isomorphism between the category of finite cocommutative Hopf braces and a certain subcategory of the category of cocommutative post-Hopf algebras, which supposes an expansion to the braided monoidal setting of the equivalence obtained for the category of vector spaces over a field $\mathbb{K}$ by Y. Li, Y. Sheng and R. Tang.

Project Number

PID2020-115155GB-I00

References

  • [1] J.N. Alonso Álvarez, J.M. Fernández Vilaboa and R. González Rodríguez, On the (co)-commutativity class of a Hopf algebra and crossed products in a braided category, Comm. Algebra 29 (12), 5857-5878, 2001.
  • [2] I. Angiono, C. Galindo and L. Vendramin, Hopf braces and Yang-Baxter operators, Proc. Amer. Math. Soc. 145 (5), 1981-1995, 2017.
  • [3] C. Bai, L. Guo, Y. Sheng and R. Tang, Post-groups, (Lie-)Butcher groups and the YangBaxter equation, Math. Ann. 388 (3), 1-41, 2024.
  • [4] R.J. Baxter, Partition function of the eight-vertex lattice model, Ann. Physics 70 (1), 193-228, 1972.
  • [5] V.G. Drinfeld, On some unsolved problems in quantum group theory, in: Quantum groups, Leningrad, 1990, 1-8, Springer, Berlin, 1992.
  • [6] J.M. Fernández Vilaboa, R. González Rodríguez, B. Ramos Pérez and A.B. Rodríguez Raposo, Modules for invertible 1-cocycles, Turkish J. Math. 48 (2), 248-266, 2024.
  • [7] R. González Rodríguez, The fundamental theorem of Hopf modules for Hopf braces, Linear Multilinear Algebra 70 (20), 5146-5156, 2022.
  • [8] R. González Rodríguez and A.B. Rodríguez Raposo, Categorical equivalences for Hopf trusses and their modules, arXiv: 2312.06520 [math.RA].
  • [9] L. Guarnieri and L. Vendramin, Skew braces and the YangBaxter equation, Math. Comp. 86 (307), 2519-2534, 2017.
  • [10] J.A. Guccione, J.J. Guccione and L. Vendramin, YangBaxter operators in symmetric categories, Comm. Algebra 46 (7), 2811-2845, 2018.
  • [11] A. Joyal and R. Street, Braided monoidal categories, Macquarie Univ. Reports 860081, 1986.
  • [12] A. Joyal and R. Street, Braided tensor categories, Adv. Math. 102 (1), 20-78, 1993.
  • [13] C. Kassel, Quantum Groups, Springer-Verlag, 1995.
  • [14] Y. Li, Y. Sheng and R. Tang, Post-Hopf algebras, relative Rota-Baxter operators and solutions of the Yang-Baxter equation, J. Noncommut. Geom. 18 (2), 605-630, 2024.
  • [15] S. Mac Lane, Categories for the working mathematician, Springer-Verlag, 1998.
  • [16] S. Majid, Transmutation Theory and Rank for Quantum Braided Groups, Math. Proc. Cambridge Philos. Soc. 113 (1), 45-70, 1993.
  • [17] W. Rump, Braces, radical rings, and the quantum YangBaxter equation, J. Algebra 307 (1), 153-170, 2007.
  • [18] P. Schauenburg, On the braiding on a Hopf algebra in a braided category, New York J. Math. 4, 259-263, 1998.
  • [19] C.N. Yang, Some exact results for the many-body problem in one dimension with repulsive delta-function interaction, Phys. Rev. Lett. 19 (23), 1312-1315, 1967.

Year 2025, Volume: 54 Issue: 5, 1872 - 1896, 29.10.2025
https://doi.org/10.15672/hujms.1511335

Abstract

Project Number

PID2020-115155GB-I00

References

  • [1] J.N. Alonso Álvarez, J.M. Fernández Vilaboa and R. González Rodríguez, On the (co)-commutativity class of a Hopf algebra and crossed products in a braided category, Comm. Algebra 29 (12), 5857-5878, 2001.
  • [2] I. Angiono, C. Galindo and L. Vendramin, Hopf braces and Yang-Baxter operators, Proc. Amer. Math. Soc. 145 (5), 1981-1995, 2017.
  • [3] C. Bai, L. Guo, Y. Sheng and R. Tang, Post-groups, (Lie-)Butcher groups and the YangBaxter equation, Math. Ann. 388 (3), 1-41, 2024.
  • [4] R.J. Baxter, Partition function of the eight-vertex lattice model, Ann. Physics 70 (1), 193-228, 1972.
  • [5] V.G. Drinfeld, On some unsolved problems in quantum group theory, in: Quantum groups, Leningrad, 1990, 1-8, Springer, Berlin, 1992.
  • [6] J.M. Fernández Vilaboa, R. González Rodríguez, B. Ramos Pérez and A.B. Rodríguez Raposo, Modules for invertible 1-cocycles, Turkish J. Math. 48 (2), 248-266, 2024.
  • [7] R. González Rodríguez, The fundamental theorem of Hopf modules for Hopf braces, Linear Multilinear Algebra 70 (20), 5146-5156, 2022.
  • [8] R. González Rodríguez and A.B. Rodríguez Raposo, Categorical equivalences for Hopf trusses and their modules, arXiv: 2312.06520 [math.RA].
  • [9] L. Guarnieri and L. Vendramin, Skew braces and the YangBaxter equation, Math. Comp. 86 (307), 2519-2534, 2017.
  • [10] J.A. Guccione, J.J. Guccione and L. Vendramin, YangBaxter operators in symmetric categories, Comm. Algebra 46 (7), 2811-2845, 2018.
  • [11] A. Joyal and R. Street, Braided monoidal categories, Macquarie Univ. Reports 860081, 1986.
  • [12] A. Joyal and R. Street, Braided tensor categories, Adv. Math. 102 (1), 20-78, 1993.
  • [13] C. Kassel, Quantum Groups, Springer-Verlag, 1995.
  • [14] Y. Li, Y. Sheng and R. Tang, Post-Hopf algebras, relative Rota-Baxter operators and solutions of the Yang-Baxter equation, J. Noncommut. Geom. 18 (2), 605-630, 2024.
  • [15] S. Mac Lane, Categories for the working mathematician, Springer-Verlag, 1998.
  • [16] S. Majid, Transmutation Theory and Rank for Quantum Braided Groups, Math. Proc. Cambridge Philos. Soc. 113 (1), 45-70, 1993.
  • [17] W. Rump, Braces, radical rings, and the quantum YangBaxter equation, J. Algebra 307 (1), 153-170, 2007.
  • [18] P. Schauenburg, On the braiding on a Hopf algebra in a braided category, New York J. Math. 4, 259-263, 1998.
  • [19] C.N. Yang, Some exact results for the many-body problem in one dimension with repulsive delta-function interaction, Phys. Rev. Lett. 19 (23), 1312-1315, 1967.
There are 19 citations in total.

Details

Primary Language English
Subjects Category Theory, K Theory, Homological Algebra
Journal Section Mathematics
Authors

J.m. Fernadez Vılaboa 0000-0002-5995-7961

Ramon Gonzalez Rodriguez 0000-0003-3061-6685

Brais Ramos Pérez 0009-0006-3912-4483

Project Number PID2020-115155GB-I00
Early Pub Date April 11, 2025
Publication Date October 29, 2025
Submission Date July 22, 2024
Acceptance Date February 19, 2025
Published in Issue Year 2025 Volume: 54 Issue: 5

Cite

APA Fernadez Vılaboa, J., Gonzalez Rodriguez, R., & Ramos Pérez, B. (2025). Categorical isomorphisms for Hopf braces. Hacettepe Journal of Mathematics and Statistics, 54(5), 1872-1896. https://doi.org/10.15672/hujms.1511335
AMA Fernadez Vılaboa J, Gonzalez Rodriguez R, Ramos Pérez B. Categorical isomorphisms for Hopf braces. Hacettepe Journal of Mathematics and Statistics. October 2025;54(5):1872-1896. doi:10.15672/hujms.1511335
Chicago Fernadez Vılaboa, J.m., Ramon Gonzalez Rodriguez, and Brais Ramos Pérez. “Categorical Isomorphisms for Hopf Braces”. Hacettepe Journal of Mathematics and Statistics 54, no. 5 (October 2025): 1872-96. https://doi.org/10.15672/hujms.1511335.
EndNote Fernadez Vılaboa J, Gonzalez Rodriguez R, Ramos Pérez B (October 1, 2025) Categorical isomorphisms for Hopf braces. Hacettepe Journal of Mathematics and Statistics 54 5 1872–1896.
IEEE J. Fernadez Vılaboa, R. Gonzalez Rodriguez, and B. Ramos Pérez, “Categorical isomorphisms for Hopf braces”, Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 5, pp. 1872–1896, 2025, doi: 10.15672/hujms.1511335.
ISNAD Fernadez Vılaboa, J.m. et al. “Categorical Isomorphisms for Hopf Braces”. Hacettepe Journal of Mathematics and Statistics 54/5 (October2025), 1872-1896. https://doi.org/10.15672/hujms.1511335.
JAMA Fernadez Vılaboa J, Gonzalez Rodriguez R, Ramos Pérez B. Categorical isomorphisms for Hopf braces. Hacettepe Journal of Mathematics and Statistics. 2025;54:1872–1896.
MLA Fernadez Vılaboa, J.m. et al. “Categorical Isomorphisms for Hopf Braces”. Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 5, 2025, pp. 1872-96, doi:10.15672/hujms.1511335.
Vancouver Fernadez Vılaboa J, Gonzalez Rodriguez R, Ramos Pérez B. Categorical isomorphisms for Hopf braces. Hacettepe Journal of Mathematics and Statistics. 2025;54(5):1872-96.