Research Article
BibTex RIS Cite

Bir Araç Radyatöründe Al2O3 ve MgO Nano Akışkanları Kullanımının Isı Transferine Etkisinin Deneysel Olarak İncelenmesi

Year 2023, , 42 - 53, 28.04.2023
https://doi.org/10.46578/humder.1197651

Abstract

Araç soğutma sistemlerinin en önemli elemanlarından olan radyatörlerde genel olarak su veya su-antifriz karışımları kullanılmakta olup bu akışkanlar özelliklerinden dolayı yeterli ısı transfer kapasitesine sahip değillerdir. Radyatörlerde ısıl özellikleri daha iyi olan nano akışkanlar kullanılarak daha verimli bir soğutma yapılabilmektedir.
Bu çalışmada boru ve kanatçıklı yapıda olan bir araç radyatöründe farklı hacimsel konsantrasyonlarda (% 0.1, % 0.3, % 0.5) hazırlanan saf su esaslı Al2O3 ve MgO nano akışkanlarının 45, 50, 55 ve 60 ℃ giriş sıcaklıkları ve 7, 8, 9, 10 lt/dk hacimsel debilerde ısı transferine etkisi deneysel olarak incelenmiştir. Deneysel veriler kullanılarak en yüksek ısı transfer artışı; Al2O3 nano akışkanları için % 20.11, MgO nano akışkanı için ise % 27.11 olarak hesaplanmıştır. Hacimsel konsantrasyon ve debi artışı ile ısı transferi artış göstermiştir. Isı transferi açısından sıcaklığın; MgO nano akışkanları için olumlu, Al2O3 nano akışkanları için ise olumsuz etkisinin olduğu gözlenmiştir.

Supporting Institution

HÜBAK

Project Number

170222

References

  • [1] A. E. Bergles, Heat transfer enhancement the encouragement and accommodation of high heat fluxes, Journal of Heat Transfer, 119:1 (1997) 8-19.
  • [2] S. U. S. Choi, J. A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, ASME Int. Mech. Eng. Congr. Expo., San Francisco, CA, 1995.
  • [3] D. Wen, Y. Ding, Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions, International Journal of Heat and Mass Transfer 47 (2004) 5181-5188.
  • [4] Z. Haddad, C. Abid, H. F. Oztop, A. Mataoui, A review on how the researchers prepare their nanofluids. Int.J of thermal sciences 76 (2014) 168-189.
  • [5] D. Singh, J. Toutbort, G. Chen, Heavy vehicle system optimization merit review and peer evaluation, Annual Report, Argonne National Laboratory, 2006.
  • [6] A. K. Tiwari, P. Ghosh, J. Sarkar, Performance comparison of the plate heat exchanger using different nanofluids, Experimental Thermal and Fluid Science, 49 (2013) 141-151.
  • [7] Y. Vermahmoudi, S. M. Peyghambarzadeh, S. H. Hashemabadi, M. Naraki, 2014. Experimental investigation on heat transfer performance of Fe2O3/water nanofluid in an air-finned heat exchanger, European Journal of Mechanics B/Fluids, 44 (2014) 32–41.
  • [8] A. M. Abed, K. Sopian, H.A. Mohammed, M.A. Alghoul, M. H. Ruslan, S.F. Mat, A. N. Al-Shamani, Enhance heat transfer in the channel with V-shaped wavy lower plate using liquid nanofluids, Case Studies in Thermal Engineering, 5 (2015) 13-23.
  • [9] W.H. Azmi, K. A. Hamid, R. Mamat, K.V. Sharma, M.S. Mohamad, Effects of working temperature on thermo-physical properties and forced convection heat transfer of TiO2 nanofluids in water – Ethylene glycol mixture, Applied Thermal Engineering, 106 (2016) 1190-1199.
  • [10] R. Barzegarian, A. Aloueyan, T.Yousefi, Thermal performance augmentation using water based Al2O3-gamma nanofluid in a horizontal shell and tube heat exchanger under forced circulation, International Communications in Heat and Mass Transfer, 86 (2017) 52-59.
  • [11] M. H. Bahmani, G. Sheikhzadeh, M. Zarringhalam, O. A. Abdullah, Investigation of turbulent heat transfer and nanofluid flow in a double pipe heat exchanger, Advanced Powder Technology, 29:2 (2018) 273-282.
  • [12] D. Mansoury, I. D. Faramarz, A. Kiani, A. J. Chamkha, M. Sharifpur, Heat transfer and flow characteristics of Al2O3/water nanofluid in various heat exchangers: Experiments on counter flow, Heat Transfer Engineering, 41:3 (2019) 220-234.
  • [13] S. M. Peyghambarzadeh, S.H, Hashemabadi, M. Naraki, Y. Vermahmoudi. “Experimental study of overall heat transfer coefficient in the application of dilute nanofluids in the car radiator”, Applied Thermal Engineering, 52 (2013) 8-16.
  • [14] M. Naraki, S. M. Peyghambarzadeh, S. H. Hashemabadi, Y. Vermahmoudi, Parametric study of overall heat transfer coefficient of CuO/water nanofluids in a car radiator, International Journal of Thermal Sciences, 66 (2013) 82-90.
  • [15] H. Muhammad Ali, H. Ali, H. Liaquat, , H.T. Maqsood, M. A. Nadir, Experimental investigation of convective heat transfer augmentation for car radiator using ZnO water nanofluids, Energy, 84 (2015) 317-324.
  • [16] H. M. Nieh, T.P. Teng, C. C. Yu, Enhanced heat dissipation of a radiator using oxide nano-coolant, International Journal of Thermal Sciences, 77 (2014) 252-261.
  • [17] M. Adnan, R. A. Hussein, K. B. Kadirgama, K. V. Sharma, Heat transfer enhancement using nanofluids in an automotive cooling system, International Communications in Heat and Mass Transfer 53 (2014) 195–202.
  • [18] T. Arunkumar, M. Anish, J. Jayaprabakar & N. Beemkumar, Enhancing heat transfer rate in a car radiator by using Al2O3 nanofluid as a coolant, International Journal of Ambient Energy. 40:4 (2017) 367-373.
  • [19] A. S. Tijani, A. S. Sudirman, Thermos-physical properties and heat transfer characteristics of water/anti-freezing and Al2O3/CuO based nanofluid as a coolant for car radiator, International Journal of Heat and Mass Transfer 118 (2018) 48–57.
  • [20] A. Karimi, M. Afrand, Numerical study on thermal performance of an air-cooled heat exchanger: E ffects of hybrid nano fluid, pipe arrangement and cross section, Energy Conversion and Management 164 (2018) 615–628.
  • [21] D. G. Subhedar, Bharat M. Ramani, A. Gupta, Experimental investigation of heat transfer potential of Al2O3/ Water-Mono Ethylene Glycol nanofl uids as a car radiator coolant, Case Studies in Thermal Engineering 11 (2018) 26–34.
  • [22] R. Ravisankar, V. S. K. Venkatachalapathy, N. Alagumurthi, Application of nanotechnology to improve the performance of tractor radiator using Cu-water nanofluid, Journal of Thermal Engineering, 4:4 (2018) 2188-2200.
  • [23] P. Chaurasia, A. Kumar, A. Yadav, P. K. Rai, V. Kumar, L. Prasad, Heat transfer augmentation in automobile radiator using Al2O3–water based nanofluid, SN Applied Sciences, 257:1 (2019) 2523-3963.
  • [24] E. M. C. Contreras, G. A. Oliveira, E. P. B. Filho, Experimental analysis of the thermohydraulic performance of graphene and silver nanofluids in automotive cooling systems, International Journal of Heat and Mass Transfer, 132 (2019) 375–387 [25] F. Neves, A. A. Soares, A. Rouboa, Forced convection heat transfer of nanofluids in turbulent flow in a flat tube of an automobile radiator, Energy, 8 (2022) 1185-1195.
  • [26] T. Koca, Otomobil Radyatöründe Su Bazlı Grafen Nanoakışkan Kullanımının Isıl Verimliliğe Etkisinin Deneysel Olarak İncelenmesi, DÜMF Mühendislik Dergisi, 11:3 (2020) 1157-1166.
  • [27] Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transfer, 11 (1998) 151-70.
  • [28] Y. Xuan, W. Roetzel, Conceptions for heat transfer correlation of nanofluids, Int. J. Heat Mass Transf. 43 (2000) 3701–3707.
  • [29] J. Maxwell, A Treatise on Electricity and Magnetisms, 3rd ed, Clarendon Press, Oxford 1891.
  • [30] A. Einstein, Eine neue bestimmung der moleküldimensionen, Annalender Physik, 19, (1906) 289–306.
Year 2023, , 42 - 53, 28.04.2023
https://doi.org/10.46578/humder.1197651

Abstract

Project Number

170222

References

  • [1] A. E. Bergles, Heat transfer enhancement the encouragement and accommodation of high heat fluxes, Journal of Heat Transfer, 119:1 (1997) 8-19.
  • [2] S. U. S. Choi, J. A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, ASME Int. Mech. Eng. Congr. Expo., San Francisco, CA, 1995.
  • [3] D. Wen, Y. Ding, Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions, International Journal of Heat and Mass Transfer 47 (2004) 5181-5188.
  • [4] Z. Haddad, C. Abid, H. F. Oztop, A. Mataoui, A review on how the researchers prepare their nanofluids. Int.J of thermal sciences 76 (2014) 168-189.
  • [5] D. Singh, J. Toutbort, G. Chen, Heavy vehicle system optimization merit review and peer evaluation, Annual Report, Argonne National Laboratory, 2006.
  • [6] A. K. Tiwari, P. Ghosh, J. Sarkar, Performance comparison of the plate heat exchanger using different nanofluids, Experimental Thermal and Fluid Science, 49 (2013) 141-151.
  • [7] Y. Vermahmoudi, S. M. Peyghambarzadeh, S. H. Hashemabadi, M. Naraki, 2014. Experimental investigation on heat transfer performance of Fe2O3/water nanofluid in an air-finned heat exchanger, European Journal of Mechanics B/Fluids, 44 (2014) 32–41.
  • [8] A. M. Abed, K. Sopian, H.A. Mohammed, M.A. Alghoul, M. H. Ruslan, S.F. Mat, A. N. Al-Shamani, Enhance heat transfer in the channel with V-shaped wavy lower plate using liquid nanofluids, Case Studies in Thermal Engineering, 5 (2015) 13-23.
  • [9] W.H. Azmi, K. A. Hamid, R. Mamat, K.V. Sharma, M.S. Mohamad, Effects of working temperature on thermo-physical properties and forced convection heat transfer of TiO2 nanofluids in water – Ethylene glycol mixture, Applied Thermal Engineering, 106 (2016) 1190-1199.
  • [10] R. Barzegarian, A. Aloueyan, T.Yousefi, Thermal performance augmentation using water based Al2O3-gamma nanofluid in a horizontal shell and tube heat exchanger under forced circulation, International Communications in Heat and Mass Transfer, 86 (2017) 52-59.
  • [11] M. H. Bahmani, G. Sheikhzadeh, M. Zarringhalam, O. A. Abdullah, Investigation of turbulent heat transfer and nanofluid flow in a double pipe heat exchanger, Advanced Powder Technology, 29:2 (2018) 273-282.
  • [12] D. Mansoury, I. D. Faramarz, A. Kiani, A. J. Chamkha, M. Sharifpur, Heat transfer and flow characteristics of Al2O3/water nanofluid in various heat exchangers: Experiments on counter flow, Heat Transfer Engineering, 41:3 (2019) 220-234.
  • [13] S. M. Peyghambarzadeh, S.H, Hashemabadi, M. Naraki, Y. Vermahmoudi. “Experimental study of overall heat transfer coefficient in the application of dilute nanofluids in the car radiator”, Applied Thermal Engineering, 52 (2013) 8-16.
  • [14] M. Naraki, S. M. Peyghambarzadeh, S. H. Hashemabadi, Y. Vermahmoudi, Parametric study of overall heat transfer coefficient of CuO/water nanofluids in a car radiator, International Journal of Thermal Sciences, 66 (2013) 82-90.
  • [15] H. Muhammad Ali, H. Ali, H. Liaquat, , H.T. Maqsood, M. A. Nadir, Experimental investigation of convective heat transfer augmentation for car radiator using ZnO water nanofluids, Energy, 84 (2015) 317-324.
  • [16] H. M. Nieh, T.P. Teng, C. C. Yu, Enhanced heat dissipation of a radiator using oxide nano-coolant, International Journal of Thermal Sciences, 77 (2014) 252-261.
  • [17] M. Adnan, R. A. Hussein, K. B. Kadirgama, K. V. Sharma, Heat transfer enhancement using nanofluids in an automotive cooling system, International Communications in Heat and Mass Transfer 53 (2014) 195–202.
  • [18] T. Arunkumar, M. Anish, J. Jayaprabakar & N. Beemkumar, Enhancing heat transfer rate in a car radiator by using Al2O3 nanofluid as a coolant, International Journal of Ambient Energy. 40:4 (2017) 367-373.
  • [19] A. S. Tijani, A. S. Sudirman, Thermos-physical properties and heat transfer characteristics of water/anti-freezing and Al2O3/CuO based nanofluid as a coolant for car radiator, International Journal of Heat and Mass Transfer 118 (2018) 48–57.
  • [20] A. Karimi, M. Afrand, Numerical study on thermal performance of an air-cooled heat exchanger: E ffects of hybrid nano fluid, pipe arrangement and cross section, Energy Conversion and Management 164 (2018) 615–628.
  • [21] D. G. Subhedar, Bharat M. Ramani, A. Gupta, Experimental investigation of heat transfer potential of Al2O3/ Water-Mono Ethylene Glycol nanofl uids as a car radiator coolant, Case Studies in Thermal Engineering 11 (2018) 26–34.
  • [22] R. Ravisankar, V. S. K. Venkatachalapathy, N. Alagumurthi, Application of nanotechnology to improve the performance of tractor radiator using Cu-water nanofluid, Journal of Thermal Engineering, 4:4 (2018) 2188-2200.
  • [23] P. Chaurasia, A. Kumar, A. Yadav, P. K. Rai, V. Kumar, L. Prasad, Heat transfer augmentation in automobile radiator using Al2O3–water based nanofluid, SN Applied Sciences, 257:1 (2019) 2523-3963.
  • [24] E. M. C. Contreras, G. A. Oliveira, E. P. B. Filho, Experimental analysis of the thermohydraulic performance of graphene and silver nanofluids in automotive cooling systems, International Journal of Heat and Mass Transfer, 132 (2019) 375–387 [25] F. Neves, A. A. Soares, A. Rouboa, Forced convection heat transfer of nanofluids in turbulent flow in a flat tube of an automobile radiator, Energy, 8 (2022) 1185-1195.
  • [26] T. Koca, Otomobil Radyatöründe Su Bazlı Grafen Nanoakışkan Kullanımının Isıl Verimliliğe Etkisinin Deneysel Olarak İncelenmesi, DÜMF Mühendislik Dergisi, 11:3 (2020) 1157-1166.
  • [27] Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transfer, 11 (1998) 151-70.
  • [28] Y. Xuan, W. Roetzel, Conceptions for heat transfer correlation of nanofluids, Int. J. Heat Mass Transf. 43 (2000) 3701–3707.
  • [29] J. Maxwell, A Treatise on Electricity and Magnetisms, 3rd ed, Clarendon Press, Oxford 1891.
  • [30] A. Einstein, Eine neue bestimmung der moleküldimensionen, Annalender Physik, 19, (1906) 289–306.
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Energy Systems Engineering (Other), Mechanical Engineering
Journal Section Research Articles
Authors

Harun Çifci 0000-0001-7808-7917

Refet Karadağ 0000-0001-9120-2764

İsmail Hilali 0000-0001-7585-0016

Project Number 170222
Publication Date April 28, 2023
Submission Date November 1, 2022
Acceptance Date December 2, 2022
Published in Issue Year 2023

Cite

APA Çifci, H., Karadağ, R., & Hilali, İ. (2023). Bir Araç Radyatöründe Al2O3 ve MgO Nano Akışkanları Kullanımının Isı Transferine Etkisinin Deneysel Olarak İncelenmesi. Harran Üniversitesi Mühendislik Dergisi, 8(1), 42-53. https://doi.org/10.46578/humder.1197651