Research Article
BibTex RIS Cite

İyileşen COVID-19 Hastalarında Miyokard Çalışması Bozulmuş Olabilir mi?

Year 2024, Volume: 21 Issue: 2, 228 - 233, 29.08.2024
https://doi.org/10.35440/hutfd.1474384

Abstract

Amaç: Bu çalışmanın amacı tamamen iyileşmiş akciğer tutulumlu COVID-19 hastalarında sol ventrikül (LV) sistolik fonksiyonunda sekel olup olmadığını, COVID-19 geçirmemiş sağlıklı kontrol grubundaki kişilerle geleneksel ekokardiyografi ve miyokard çalışması ile karşılaştırarak incelemektir.
Materyal ve Metod: 55 sağlıklı gönüllü ve akciğer tutulumlu COVID-19 nedeniyle hastaneye yatışı yapılan 61 hasta dahil edildi. Hastaların hastanede yatışları sırasında non-invaziv veya invaziv mekanik ventilasyon desteğine ih-tiyaçları olmadı. Hastalar COVID-19'dan iyileştikten sonra en az altı ay süreyle semptomsuzlarsa çalışmaya dahil edildi. Transtorasik ekokardiyografi (TTE) yapıldı. Demografik ve klinik özellikler ile laboratuvar test sonuçları top-landı. Klinik özellikler, kan testleri, TTE, STE ve miyokardiyal çalışma sonuçları karşılaştırıldı.
Bulgular: Çalışma grupları arasında LV’nin strain parametrelerinde istatistiksel olarak anlamlı bir fark bulunmadı. Hasta grubunda global çalışma indeksi (GWI), global yapılandırılmış çalışma (GCW) ve global çalışma verimliliği (GWE) düzeylerinde belirgin derecede azalma izlendi. (tüm p değerleri < 0.001) Hasta grubunda anlamlı derecede yüksek global boşa giden çalışma (GWW) düzeyi izlendi. (p=0.009)
Sonuç: Tamamen iyileşmiş, semptomsuz akciğer tutulumlu COVID-19 hastalarında GWI, GCW ve GWE anlamlı olarak düşük değerler gösterirken, GWW anlamlı olarak daha yüksek değerler gösterdi. Miyokardiyal çalışma pa-rametreleri miyokardiyal sekelleri belirlemede yararlı olabilir.

References

  • 1. Long B, Carius BM, Chavez S, Liang SY, Brady WJ, Koyfman A, et al. Clinical update on COVID-19 for the emergency cli-nician: Presentation and evaluation. Am J Emerg Med. 2022;54:46-57. doi: 10.1016/j.ajem.2022.01.028.
  • 2. Parums DV. Editorial: A Rapid Global Increase in COVID-19 is Due to the Emergence of the EG.5 (Eris) Subvariant of Omicron SARS-CoV-2. Med Sci Monit. 2023;29:e942244. doi: 10.12659/MSM.942244.
  • 3. Babapoor-Farrokhran S, Gill D, Walker J, Rasekhi RT, Bo-zorgnia B, Amanullah A. Myocardial injury and COVID-19: Possible mechanisms. Life Sci. 2020;253:117723. doi: 10.1016/j.lfs.2020.117723.
  • 4. Shi S, Qin M, Shen B, Cai Y, Liu T, Yang F, et al. Association of Cardiac Injury With Mortality in Hospitalized Patients With COVID-19 in Wuhan, China. JAMA Cardiol. 2020;5(7):802-810. doi: 10.1001/jamacardio.2020.0950.
  • 5. Liu F, Liu F, Wang L. COVID-19 and cardiovascular diseases. J Mol Cell Biol. 2021;13(3):161-167. doi: 10.1093/jmcb/mjaa064.
  • 6. Clerkin KJ, Fried JA, Raikhelkar J, Sayer G, Griffin JM, Ma-soumi A, et al. COVID-19 and Cardiovascular Disease. Circu-lation. 2020;141(20):1648-1655. doi: 10.1161/CIRCULATIONAHA.120.046941.
  • 7. Li B, Yang J, Zhao F, Zhi L, Wang X, Liu L, et al. Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China. Clin Res Cardiol. 2020;109(5):531-538. doi: 10.1007/s00392-020-01626-9.
  • 8. Xiong TY, Redwood S, Prendergast B, Chen M. Coronavirus-es and the cardiovascular system: acute and long-term im-plications. Eur Heart J. 2020;41(19):1798-1800. doi: 10.1093/eurheartj/ehaa231.
  • 9. Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. Patho-logical findings of COVID-19 associated with acute respira-tory distress syndrome. Lancet Respir Med. 2020;8(4):420-422. doi: 10.1016/S2213-2600(20)30076-X. Epub 2020 Feb 18.
  • 10. Paternoster G, Bertini P, Innelli P, Trambaiolo P, Landoni G, Franchi F, et al. Right Ventricular Dysfunction in Patients With COVID-19: A Systematic Review and Meta-analysis. J Cardiothorac Vasc Anesth. 2021;35(11):3319-3324. doi: 10.1053/j.jvca.2021.04.008.
  • 11. Konstam MA, Abboud FM. Ejection Fraction: Misunderstood and Overrated (Changing the Paradigm in Categorizing Heart Failure). Circulation. 2017;135(8):717-719.
  • 12. Ilardi F, D'Andrea A, D'Ascenzi F, Bandera F, Benfari G, Esposito R, et al, On Behalf Of The Working Group Of Echo-cardiography Of The Italian Society Of Cardiology Sic. Myo-cardial Work by Echocardiography: Principles and Applica-tions in Clinical Practice. J Clin Med. 2021;10(19):4521. doi: 10.3390/jcm10194521.
  • 13. Yingchoncharoen T, Agarwal S, Popović ZB, Marwick TH. Normal ranges of left ventricular strain: a meta-analysis. J Am Soc Echocardiogr. 2013;26(2):185-91. doi: 10.1016/j.echo.2012.10.008.
  • 14. Cameli M, Mandoli GE, Sciaccaluga C, Mondillo S. More than 10 years of speckle tracking echocardiography: Still a novel technique or a definite tool for clinical practice? Echocardiography. 2019;36(5):958-970. doi: 10.1111/echo.14339.
  • 15. Yuda S. Current clinical applications of speckle tracking echocardiography for assessment of left atrial function. J Echocardiogr. 2021;19(3):129-140. doi: 10.1007/s12574-021-00519-8.
  • 16. Gunasekaran P, Panaich S, Briasoulis A, Cardozo S, Afonso L. Incremental Value of Two Dimensional Speckle Tracking Echocardiography in the Functional Assessment and Charac-terization of Subclinical Left Ventricular Dysfunction. Curr Cardiol Rev. 2017;13(1):32-40. doi: 10.2174/1573403x12666160712095938.
  • 17. Liu JE, Barac A, Thavendiranathan P, Scherrer-Crosbie M. Strain Imaging in Cardio-Oncology. JACC CardioOncol. 2020;2(5):677-689. doi: 10.1016/j.jaccao.2020.10.011.
  • 18. Longobardo L, Suma V, Jain R, Carerj S, Zito C, Zwicke DL, et al. Role of Two-Dimensional Speckle-Tracking Echocardiog-raphy Strain in the Assessment of Right Ventricular Systolic Function and Comparison with Conventional Parameters. J Am Soc Echocardiogr. 2017;30(10):937-946.e6. doi: 10.1016/j.echo.2017.06.016.
  • 19. Collier P, Phelan D, Klein A. A Test in Context: Myocardial Strain Measured by Speckle-Tracking Echocardiography. J Am Coll Cardiol. 2017;69(8):1043-1056. doi: 10.1016/j.jacc.2016.12.012.
  • 20. Russell K, Eriksen M, Aaberge L, Wilhelmsen N, Skulstad H, Remme EW, et al. A novel clinical method for quantifica-tion of regional left ventricular pressure-strain loop area: a non-invasive index of myocardial work. Eur Heart J. 2012;33(6):724-33. doi: 10.1093/eurheartj/ehs016. Epub 2012 Feb 6.
  • 21. Hubert A, Le Rolle V, Leclercq C, Galli E, Samset E, Casset C, et al. Estimation of myocardial work from pressure-strain loops analysis: an experimental evaluation. Eur Heart J Car-diovasc Imaging. 2018;19(12):1372-1379.
  • 22. Mitchell C, Rahko PS, Blauwet LA, Canaday B, Finstuen JA, Foster MC, et al. Guidelines for Performing a Comprehen-sive Transthoracic Echocardiographic Examination in Adults: Recommendations from the American Society of Echocar-diography. J Am Soc Echocardiogr. 2019;32(1):1-64. doi: 10.1016/j.echo.2018.06.004.
  • 23. Bieber S, Kraechan A, Hellmuth JC, Muenchhoff M, Scherer C, Schroeder I, et al. Left and right ventricular dysfunction in patients with COVID-19-associated myocardial injury. Infec-tion. 2021;49(3):491-500. doi: 10.1007/s15010-020-01572-8.
  • 24. Smilowitz NR, Jethani N, Chen J, Aphinyanaphongs Y, Zhang R, Dogra S, et al. Myocardial Injury in Adults Hospitalized With COVID-19. Circulation. 2020;142(24):2393-2395. doi: 10.1161/CIRCULATIONAHA.120.050434.
  • 25. Sandoval Y, Januzzi JL Jr, Jaffe AS. Cardiac Troponin for Assessment of Myocardial Injury in COVID-19: JACC Review Topic of the Week. J Am Coll Cardiol. 2020;76(10):1244-1258. doi: 10.1016/j.jacc.2020.06.068.
  • 26. Toprak K, Kaplangoray M, Palice A, Taşcanov MB, İnanır M, Memioğlu T, et al. SCUBE1 is associated with thrombotic complications, disease severity, and in-hospital mortality in COVID-19 patients. Thromb Res. 2022;220:100-106. doi: 10.1016/j.thromres.2022.10.016.
  • 27. Terzic CM, Medina-Inojosa BJ. Cardiovascular Complications of Coronavirus Disease-2019. Phys Med Rehabil Clin N Am. 2023;34(3):551-561. doi: 10.1016/j.pmr.2023.03.003.
  • 28. Jones EAV. Mechanism of COVID-19-Induced Cardiac Dam-age from Patient, In Vitro and Animal Studies. Curr Heart Fail Rep. 2023;20(5):451-460. doi: 10.1007/s11897-023-00618-w.
  • 29. Marwick TH. Ejection Fraction Pros and Cons: JACC State-of-the-Art Review. J Am Coll Cardiol. 2018;72(19):2360-2379. doi: 10.1016/j.jacc.2018.08.2162. PMID: 30384893.
  • 30. van Dalen BM, Soliman OI, Vletter WB, Kauer F, van der Zwaan HB, ten Cate FJ, et al. Feasibility and reproducibility of left ventricular rotation parameters measured by speckle tracking echocardiography. Eur J Echocardiogr. 2009;10(5):669-76. doi: 10.1093/ejechocard/jep036.
  • 31. Geyer H, Caracciolo G, Abe H, Wilansky S, Carerj S, Gentile F, et al. Assessment of myocardial mechanics using speckle tracking echocardiography: fundamentals and clinical appli-cations. J Am Soc Echocardiogr. 2010;23(4):351-69; quiz 453-5. doi: 10.1016/j.echo.2010.02.015.
  • 32. Stefani L, Brown P, Gerges M, Emerson P, Ferkh A, Kairaitis K, Gilroy N, Altman M, Thomas L. Echocardiographic As-sessment in Patients Recovered from Acute COVID-19 Ill-ness. J Cardiovasc Dev Dis. 2023;10(8):349. doi: 10.3390/jcdd10080349.
  • 33. Lassen MCH, Skaarup KG, Lind JN, Alhakak AS, Sengeløv M, Nielsen AB, et al. Echocardiographic abnormalities and pre-dictors of mortality in hospitalized COVID-19 patients: the ECHOVID-19 study. ESC Heart Fail. 2020;7(6):4189-4197. doi: 10.1002/ehf2.13044.
  • 34. Huang H, Fu L, Ruan Q, You Z, Yan L. Segmental and global myocardial work in hypertensive patients with different left ventricular geometry. Cardiovasc Ultrasound. 2023;21(1):11. doi: 10.1186/s12947-023-00310-y.
  • 35. Olsen FJ, Lassen MCH, Skaarup KG, Christensen J, Davidov-ski FS, Alhakak AS, et al. Myocardial Work in Patients Hos-pitalized With COVID-19: Relation to Biomarkers, COVID-19 Severity, and All-Cause Mortality. J Am Heart Assoc. 2022;11(19):e026571. doi: 10.1161/JAHA.122.026571.
  • 36. Luchian ML, Motoc A, Lochy S, Magne J, Belsack D, De Mey J, Roosens B, Van den Bussche K, Boeckstaens S, Cha-meleva H, Geers J, Houard L, De Potter T, Allard S, Wey-tjens C, Droogmans S, Cosyns B. Subclinical Myocardial Dys-function in Patients with Persistent Dyspnea One Year after COVID-19. Diagnostics (Basel). 2021;12(1):57. doi: 10.3390/diagnostics12010057.

May Recovered COVID-19 Patients Have Impaired Myocardial Work?

Year 2024, Volume: 21 Issue: 2, 228 - 233, 29.08.2024
https://doi.org/10.35440/hutfd.1474384

Abstract

Background: The aim of this study was to investigate whether there are sequelae in left ventricular (LV) systolic function by comparing LV function in fully recovered COVID-19 patients with pulmonary involvement and healthy controls without COVID-19 by conventional echocardiography and myocardial work.
Materials and Methods: 55 healthy volunteers and 61 patients hospitalized with COVID-19 with pulmonary in-volvement were included. Patients did not need non-invasive or invasive mechanical ventilation support during hospitalization. Patients were included in the study if they were asymptomatic for at least six months after recov-ery from COVID-19. Transthoracic echocardiography (TTE) was performed. Demographic and clinical characteris-tics and laboratory test results were collected. Clinical characteristics, blood tests, TTE, speckle-tracking echocar-diography (STE) and myocardial work results were compared.
Results: No statistically significant differences were found in the longitudinal strain parameters of the LV among the study groups. The patient group exhibited notably reduced levels of global work index (GWI), global con-structed work (GCW), and global work efficiency (GWE). The patient group exhibited a notably elevated global wasted work (GWW).
Conclusions: The group of fully recovered asymptomatic COVID-19 patients with pulmonary involvement showed significantly lower values for GWI, GCW, and GWE, while GWW showed a significantly higher value. Myocardial work parameters may be useful in determining myocardial sequelae.

References

  • 1. Long B, Carius BM, Chavez S, Liang SY, Brady WJ, Koyfman A, et al. Clinical update on COVID-19 for the emergency cli-nician: Presentation and evaluation. Am J Emerg Med. 2022;54:46-57. doi: 10.1016/j.ajem.2022.01.028.
  • 2. Parums DV. Editorial: A Rapid Global Increase in COVID-19 is Due to the Emergence of the EG.5 (Eris) Subvariant of Omicron SARS-CoV-2. Med Sci Monit. 2023;29:e942244. doi: 10.12659/MSM.942244.
  • 3. Babapoor-Farrokhran S, Gill D, Walker J, Rasekhi RT, Bo-zorgnia B, Amanullah A. Myocardial injury and COVID-19: Possible mechanisms. Life Sci. 2020;253:117723. doi: 10.1016/j.lfs.2020.117723.
  • 4. Shi S, Qin M, Shen B, Cai Y, Liu T, Yang F, et al. Association of Cardiac Injury With Mortality in Hospitalized Patients With COVID-19 in Wuhan, China. JAMA Cardiol. 2020;5(7):802-810. doi: 10.1001/jamacardio.2020.0950.
  • 5. Liu F, Liu F, Wang L. COVID-19 and cardiovascular diseases. J Mol Cell Biol. 2021;13(3):161-167. doi: 10.1093/jmcb/mjaa064.
  • 6. Clerkin KJ, Fried JA, Raikhelkar J, Sayer G, Griffin JM, Ma-soumi A, et al. COVID-19 and Cardiovascular Disease. Circu-lation. 2020;141(20):1648-1655. doi: 10.1161/CIRCULATIONAHA.120.046941.
  • 7. Li B, Yang J, Zhao F, Zhi L, Wang X, Liu L, et al. Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China. Clin Res Cardiol. 2020;109(5):531-538. doi: 10.1007/s00392-020-01626-9.
  • 8. Xiong TY, Redwood S, Prendergast B, Chen M. Coronavirus-es and the cardiovascular system: acute and long-term im-plications. Eur Heart J. 2020;41(19):1798-1800. doi: 10.1093/eurheartj/ehaa231.
  • 9. Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. Patho-logical findings of COVID-19 associated with acute respira-tory distress syndrome. Lancet Respir Med. 2020;8(4):420-422. doi: 10.1016/S2213-2600(20)30076-X. Epub 2020 Feb 18.
  • 10. Paternoster G, Bertini P, Innelli P, Trambaiolo P, Landoni G, Franchi F, et al. Right Ventricular Dysfunction in Patients With COVID-19: A Systematic Review and Meta-analysis. J Cardiothorac Vasc Anesth. 2021;35(11):3319-3324. doi: 10.1053/j.jvca.2021.04.008.
  • 11. Konstam MA, Abboud FM. Ejection Fraction: Misunderstood and Overrated (Changing the Paradigm in Categorizing Heart Failure). Circulation. 2017;135(8):717-719.
  • 12. Ilardi F, D'Andrea A, D'Ascenzi F, Bandera F, Benfari G, Esposito R, et al, On Behalf Of The Working Group Of Echo-cardiography Of The Italian Society Of Cardiology Sic. Myo-cardial Work by Echocardiography: Principles and Applica-tions in Clinical Practice. J Clin Med. 2021;10(19):4521. doi: 10.3390/jcm10194521.
  • 13. Yingchoncharoen T, Agarwal S, Popović ZB, Marwick TH. Normal ranges of left ventricular strain: a meta-analysis. J Am Soc Echocardiogr. 2013;26(2):185-91. doi: 10.1016/j.echo.2012.10.008.
  • 14. Cameli M, Mandoli GE, Sciaccaluga C, Mondillo S. More than 10 years of speckle tracking echocardiography: Still a novel technique or a definite tool for clinical practice? Echocardiography. 2019;36(5):958-970. doi: 10.1111/echo.14339.
  • 15. Yuda S. Current clinical applications of speckle tracking echocardiography for assessment of left atrial function. J Echocardiogr. 2021;19(3):129-140. doi: 10.1007/s12574-021-00519-8.
  • 16. Gunasekaran P, Panaich S, Briasoulis A, Cardozo S, Afonso L. Incremental Value of Two Dimensional Speckle Tracking Echocardiography in the Functional Assessment and Charac-terization of Subclinical Left Ventricular Dysfunction. Curr Cardiol Rev. 2017;13(1):32-40. doi: 10.2174/1573403x12666160712095938.
  • 17. Liu JE, Barac A, Thavendiranathan P, Scherrer-Crosbie M. Strain Imaging in Cardio-Oncology. JACC CardioOncol. 2020;2(5):677-689. doi: 10.1016/j.jaccao.2020.10.011.
  • 18. Longobardo L, Suma V, Jain R, Carerj S, Zito C, Zwicke DL, et al. Role of Two-Dimensional Speckle-Tracking Echocardiog-raphy Strain in the Assessment of Right Ventricular Systolic Function and Comparison with Conventional Parameters. J Am Soc Echocardiogr. 2017;30(10):937-946.e6. doi: 10.1016/j.echo.2017.06.016.
  • 19. Collier P, Phelan D, Klein A. A Test in Context: Myocardial Strain Measured by Speckle-Tracking Echocardiography. J Am Coll Cardiol. 2017;69(8):1043-1056. doi: 10.1016/j.jacc.2016.12.012.
  • 20. Russell K, Eriksen M, Aaberge L, Wilhelmsen N, Skulstad H, Remme EW, et al. A novel clinical method for quantifica-tion of regional left ventricular pressure-strain loop area: a non-invasive index of myocardial work. Eur Heart J. 2012;33(6):724-33. doi: 10.1093/eurheartj/ehs016. Epub 2012 Feb 6.
  • 21. Hubert A, Le Rolle V, Leclercq C, Galli E, Samset E, Casset C, et al. Estimation of myocardial work from pressure-strain loops analysis: an experimental evaluation. Eur Heart J Car-diovasc Imaging. 2018;19(12):1372-1379.
  • 22. Mitchell C, Rahko PS, Blauwet LA, Canaday B, Finstuen JA, Foster MC, et al. Guidelines for Performing a Comprehen-sive Transthoracic Echocardiographic Examination in Adults: Recommendations from the American Society of Echocar-diography. J Am Soc Echocardiogr. 2019;32(1):1-64. doi: 10.1016/j.echo.2018.06.004.
  • 23. Bieber S, Kraechan A, Hellmuth JC, Muenchhoff M, Scherer C, Schroeder I, et al. Left and right ventricular dysfunction in patients with COVID-19-associated myocardial injury. Infec-tion. 2021;49(3):491-500. doi: 10.1007/s15010-020-01572-8.
  • 24. Smilowitz NR, Jethani N, Chen J, Aphinyanaphongs Y, Zhang R, Dogra S, et al. Myocardial Injury in Adults Hospitalized With COVID-19. Circulation. 2020;142(24):2393-2395. doi: 10.1161/CIRCULATIONAHA.120.050434.
  • 25. Sandoval Y, Januzzi JL Jr, Jaffe AS. Cardiac Troponin for Assessment of Myocardial Injury in COVID-19: JACC Review Topic of the Week. J Am Coll Cardiol. 2020;76(10):1244-1258. doi: 10.1016/j.jacc.2020.06.068.
  • 26. Toprak K, Kaplangoray M, Palice A, Taşcanov MB, İnanır M, Memioğlu T, et al. SCUBE1 is associated with thrombotic complications, disease severity, and in-hospital mortality in COVID-19 patients. Thromb Res. 2022;220:100-106. doi: 10.1016/j.thromres.2022.10.016.
  • 27. Terzic CM, Medina-Inojosa BJ. Cardiovascular Complications of Coronavirus Disease-2019. Phys Med Rehabil Clin N Am. 2023;34(3):551-561. doi: 10.1016/j.pmr.2023.03.003.
  • 28. Jones EAV. Mechanism of COVID-19-Induced Cardiac Dam-age from Patient, In Vitro and Animal Studies. Curr Heart Fail Rep. 2023;20(5):451-460. doi: 10.1007/s11897-023-00618-w.
  • 29. Marwick TH. Ejection Fraction Pros and Cons: JACC State-of-the-Art Review. J Am Coll Cardiol. 2018;72(19):2360-2379. doi: 10.1016/j.jacc.2018.08.2162. PMID: 30384893.
  • 30. van Dalen BM, Soliman OI, Vletter WB, Kauer F, van der Zwaan HB, ten Cate FJ, et al. Feasibility and reproducibility of left ventricular rotation parameters measured by speckle tracking echocardiography. Eur J Echocardiogr. 2009;10(5):669-76. doi: 10.1093/ejechocard/jep036.
  • 31. Geyer H, Caracciolo G, Abe H, Wilansky S, Carerj S, Gentile F, et al. Assessment of myocardial mechanics using speckle tracking echocardiography: fundamentals and clinical appli-cations. J Am Soc Echocardiogr. 2010;23(4):351-69; quiz 453-5. doi: 10.1016/j.echo.2010.02.015.
  • 32. Stefani L, Brown P, Gerges M, Emerson P, Ferkh A, Kairaitis K, Gilroy N, Altman M, Thomas L. Echocardiographic As-sessment in Patients Recovered from Acute COVID-19 Ill-ness. J Cardiovasc Dev Dis. 2023;10(8):349. doi: 10.3390/jcdd10080349.
  • 33. Lassen MCH, Skaarup KG, Lind JN, Alhakak AS, Sengeløv M, Nielsen AB, et al. Echocardiographic abnormalities and pre-dictors of mortality in hospitalized COVID-19 patients: the ECHOVID-19 study. ESC Heart Fail. 2020;7(6):4189-4197. doi: 10.1002/ehf2.13044.
  • 34. Huang H, Fu L, Ruan Q, You Z, Yan L. Segmental and global myocardial work in hypertensive patients with different left ventricular geometry. Cardiovasc Ultrasound. 2023;21(1):11. doi: 10.1186/s12947-023-00310-y.
  • 35. Olsen FJ, Lassen MCH, Skaarup KG, Christensen J, Davidov-ski FS, Alhakak AS, et al. Myocardial Work in Patients Hos-pitalized With COVID-19: Relation to Biomarkers, COVID-19 Severity, and All-Cause Mortality. J Am Heart Assoc. 2022;11(19):e026571. doi: 10.1161/JAHA.122.026571.
  • 36. Luchian ML, Motoc A, Lochy S, Magne J, Belsack D, De Mey J, Roosens B, Van den Bussche K, Boeckstaens S, Cha-meleva H, Geers J, Houard L, De Potter T, Allard S, Wey-tjens C, Droogmans S, Cosyns B. Subclinical Myocardial Dys-function in Patients with Persistent Dyspnea One Year after COVID-19. Diagnostics (Basel). 2021;12(1):57. doi: 10.3390/diagnostics12010057.
There are 36 citations in total.

Details

Primary Language English
Subjects Cardiology
Journal Section Research Article
Authors

Mesut Karataş 0000-0003-1526-1812

Kenan Toprak 0000-0001-8923-8709

Nursen Keles This is me 0000-0002-6219-1071

Kemal Emrecan Parsova 0000-0002-2436-0241

Mehmet Baran Karataş 0000-0001-7578-8451

Erkan Kahraman This is me 0000-0002-4855-573X

Cevdet Uğur Koçoğulları This is me 0000-0002-6303-2478

Early Pub Date August 8, 2024
Publication Date August 29, 2024
Submission Date May 2, 2024
Acceptance Date July 1, 2024
Published in Issue Year 2024 Volume: 21 Issue: 2

Cite

Vancouver Karataş M, Toprak K, Keles N, Parsova KE, Karataş MB, Kahraman E, Koçoğulları CU. May Recovered COVID-19 Patients Have Impaired Myocardial Work?. Harran Üniversitesi Tıp Fakültesi Dergisi. 2024;21(2):228-33.

Harran Üniversitesi Tıp Fakültesi Dergisi  / Journal of Harran University Medical Faculty