Research Article
BibTex RIS Cite
Year 2021, Volume: 5 Issue: 1, 47 - 52, 15.04.2021
https://doi.org/10.35860/iarej.768266

Abstract

References

  • 1. Kron, T., Lehmann, J., Greer, P.B., Dosimetry of ionising radiation in modern radiation oncology. Physics in Medicine & Biology, 2016. 61(14): R167.
  • 2. Keal, P., Baldock C., A theoretical study of the radiological properties and water equivalance of Fricke and polymer gels used for radiation dosimetry. Australasian Physical & Engineering Sciences in Medicine, 1999. 22(3): p. 85-91.
  • 3. Gambarini, G., Carrara, M., Marrani, M., Pirola, L., Tomatis, S., Valente, M., Vanossi, E., Optical analysis of gel dosimeters: Comparision of Fricke and normoxic polymer gels. Nuclear Instruments and Methods in Physics Research, 2007. 263: p. 191-195.
  • 4. Galante, A.M.S., Cervantes, H.J., Cavinato, C.C., Campos, L.L., Rabbani, S.R., MRI study of radiation effect on Fricke gel solutions. Radiation Measurement, 2008. 43(2-6): p. 550-553.
  • 5. Ibbott, G.S., Roed, Y,, Lee, H., Alqathami, M,, Wang, J., Pinsky, L., Blencowe, A., Gel dosimetry enables volumetric evaluation of dose distributions from an MR-guided linac. AIP Conference Proceedings, 2016 Jun 17, Article number 040002.
  • 6. Soliman, Y.S., El Gohary, M.I., Abdel Gawad, M.H., Amin, E.A., Desouky, O.S., Fricke gel dosimeter as a tool in quality assurance of the radiotherapy treatment plans. Applied Radiation and Isotopes,. 2017. 120: p. 126-132.
  • 7. Aktaş, S,, Korkut, Ö., Sağsöz, M.E., Dosimetric fricke gel systems improved with CaCl2 and gluconic acid. International Advanced Researches and Engineering Journal, 2018, 2(2):143-146.
  • 8. De Deene, Y., Gel – based radiation dosimetry using quantitative MRI., Chapter 9, NMR and MRI of Gels, 2020, Editor: Yves De Deene p. 275-357.
  • 9. Gallo, S., Cremonesia, L., Gambarini G., Ianni L., Lenardi, C., Argentiere, S., Bette, D., Gargano, M., Ludwig, N., Veronese, I. Study of the effect of laponite on Fricke xylenol orange gel dosimeter by optical techniques. Sensors and Actuators B, 2018. 272: p. 618-625.
  • 10. Gambarini, G., Veronese, I, Bettinelli, L, Felisi, M., Gargano, M., Ludwig, N., Lenardi, C., Carrara M., Collura G., Gallo S. et al. Study of optical absorbance and MR relaxation of Fricke xylenol orange gel dosimeters. Radiation Measurement, 2017. 106: p. 622-627.
  • 11. Babu, S.E.S., Peace, B.S.T, Rafic, K.M, Raj E.W.M, Christopher J.S, Ravindran B.P. Escalation of optical transmittance and determination of diffusion coefficient in low-bloom strength gelatin-based Fricke gel dosimeters. Radiation Physics and Chemistry, 2019. 156: p. 300–306.
  • 12. Abdelgawad, M.H, Soliman, Y.S, ElGohry, M.I, Eldib, A.A. , Ma C.-M.C., Desouky, O., Measurements of radiotherapy dosimetric parameters using Fricke gel dosimeter. Biomedical Physics & Engineering Express, 2017. 3 (2): p. 025021.
  • 13. Lazzaronia, S., . Liosic, G.M, Marianic., M.,. Dondia D., An innovative Fe3+ selective ligand for Fricke-gel dosimeter, Radiation Physics and Chemistry, 2020, 171: 108733.
  • 14. Keller, B.M. Characterization of the NMR-based Fricke-gelatin radiation dosimeter. Master of Science in Medical Physics. 1994. Montreal: McGill University.
  • 15. Spinks, J.W.T, Woods, R.J. An introduction to radiation chemistry. 1990.New York (NY): Wiley; ISBN 0‐471‐61403‐3.
  • 16. Hermanto, S., Sumarlin, L.O, Fatimah W., Differentiation of bovine and porcine gelatin based on spectroscopic and electrophoretic analysis. Journal of Food and Pharmaceutical Sciences,2013. 1: p. 68-73.
  • 17. Hossan, Md.J, Gafur, M.A, Kadir Md.R, Karim M.M. Preparation and characterization of gelatin- hydroxyapatite composite for bone tissue engineering. International Journal of Engineering & Technology Sciences, 2014, 14(01): p.24.
  • 18. Sun, X, Zheng, C, Zhang, F, Yang Y, Wu G, Yu A, Guan N. Size-controlled synthesis of magnetite (Fe3O4) nanoparticles coated with glucose and GA from a single Fe(III) precursor by a sucrose bifunctional hydrothermal method. Journal of Physics and Chemistry C, 2009. 113: p. 16002–16008.
  • 19. Gündüz F, Bayrak B., Synthesis and performance of pomegranate peel-supported zero-valent iron nanoparticles for adsorption of malachite green. Desalination Water Treatment, 2018. 110: p. 180–192.
  • 20. Xiao W, Jones AM, Collins RN, Bligh MW, Waite TD. Use of fourier transform infrared spectroscopy to examine the Fe(II)-Catalyzed transformation of ferrihydrite. Talanta, 2017, 175: p. 30–37.
  • 21. Ercan, G., Uzunoğlu, D., Ergüt, M., Özer, A., Biosynthesis and characterization of iron oxide nanoparticles from Enteromorpha spp. extract: determination of adsorbent properties for copper (II) ions. International Advanced Researches and Engineering Journal. 2019, 3(1): p. 65-74.
  • 22. Chen, J., Wu, L., Pan, T., Xie, J., Chen, H. A quantification method of glucose in aqueous solution by FTIR/ATR spectroscopy. Seventh International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2010)), 2010, p. 2159-2163.

Dose response of gluconic acid doped Fricke gels irradiated with X-rays

Year 2021, Volume: 5 Issue: 1, 47 - 52, 15.04.2021
https://doi.org/10.35860/iarej.768266

Abstract

Adjusting the dose of radiation which is received by a cancer patient during radiotherapy is very important. The use of dosimetric gels to calculate the applied dose distribution three- dimensionally is a current research topic in radiotherapy. In this study, 16 different Fricke gels including gluconic acid (GA) were produced. These gels were irradiated from 0 to 250 cGy with increments of 50 cGy. MR intensity values and images, UV absorbance values and FT-IR spectra of gels were obtained before and after the irradiation process. The UV absorbance and MR intensity values showed a linear increase in relation to the increase in the applied dose and the amount of ferrous sulfate and GA content in the gels. The oxidation of iron increases as a result of the interaction with hydrogen peroxide which is the product of the irradiation process and GA, and thus the response of the gel to the irradiation process becomes more effective.

References

  • 1. Kron, T., Lehmann, J., Greer, P.B., Dosimetry of ionising radiation in modern radiation oncology. Physics in Medicine & Biology, 2016. 61(14): R167.
  • 2. Keal, P., Baldock C., A theoretical study of the radiological properties and water equivalance of Fricke and polymer gels used for radiation dosimetry. Australasian Physical & Engineering Sciences in Medicine, 1999. 22(3): p. 85-91.
  • 3. Gambarini, G., Carrara, M., Marrani, M., Pirola, L., Tomatis, S., Valente, M., Vanossi, E., Optical analysis of gel dosimeters: Comparision of Fricke and normoxic polymer gels. Nuclear Instruments and Methods in Physics Research, 2007. 263: p. 191-195.
  • 4. Galante, A.M.S., Cervantes, H.J., Cavinato, C.C., Campos, L.L., Rabbani, S.R., MRI study of radiation effect on Fricke gel solutions. Radiation Measurement, 2008. 43(2-6): p. 550-553.
  • 5. Ibbott, G.S., Roed, Y,, Lee, H., Alqathami, M,, Wang, J., Pinsky, L., Blencowe, A., Gel dosimetry enables volumetric evaluation of dose distributions from an MR-guided linac. AIP Conference Proceedings, 2016 Jun 17, Article number 040002.
  • 6. Soliman, Y.S., El Gohary, M.I., Abdel Gawad, M.H., Amin, E.A., Desouky, O.S., Fricke gel dosimeter as a tool in quality assurance of the radiotherapy treatment plans. Applied Radiation and Isotopes,. 2017. 120: p. 126-132.
  • 7. Aktaş, S,, Korkut, Ö., Sağsöz, M.E., Dosimetric fricke gel systems improved with CaCl2 and gluconic acid. International Advanced Researches and Engineering Journal, 2018, 2(2):143-146.
  • 8. De Deene, Y., Gel – based radiation dosimetry using quantitative MRI., Chapter 9, NMR and MRI of Gels, 2020, Editor: Yves De Deene p. 275-357.
  • 9. Gallo, S., Cremonesia, L., Gambarini G., Ianni L., Lenardi, C., Argentiere, S., Bette, D., Gargano, M., Ludwig, N., Veronese, I. Study of the effect of laponite on Fricke xylenol orange gel dosimeter by optical techniques. Sensors and Actuators B, 2018. 272: p. 618-625.
  • 10. Gambarini, G., Veronese, I, Bettinelli, L, Felisi, M., Gargano, M., Ludwig, N., Lenardi, C., Carrara M., Collura G., Gallo S. et al. Study of optical absorbance and MR relaxation of Fricke xylenol orange gel dosimeters. Radiation Measurement, 2017. 106: p. 622-627.
  • 11. Babu, S.E.S., Peace, B.S.T, Rafic, K.M, Raj E.W.M, Christopher J.S, Ravindran B.P. Escalation of optical transmittance and determination of diffusion coefficient in low-bloom strength gelatin-based Fricke gel dosimeters. Radiation Physics and Chemistry, 2019. 156: p. 300–306.
  • 12. Abdelgawad, M.H, Soliman, Y.S, ElGohry, M.I, Eldib, A.A. , Ma C.-M.C., Desouky, O., Measurements of radiotherapy dosimetric parameters using Fricke gel dosimeter. Biomedical Physics & Engineering Express, 2017. 3 (2): p. 025021.
  • 13. Lazzaronia, S., . Liosic, G.M, Marianic., M.,. Dondia D., An innovative Fe3+ selective ligand for Fricke-gel dosimeter, Radiation Physics and Chemistry, 2020, 171: 108733.
  • 14. Keller, B.M. Characterization of the NMR-based Fricke-gelatin radiation dosimeter. Master of Science in Medical Physics. 1994. Montreal: McGill University.
  • 15. Spinks, J.W.T, Woods, R.J. An introduction to radiation chemistry. 1990.New York (NY): Wiley; ISBN 0‐471‐61403‐3.
  • 16. Hermanto, S., Sumarlin, L.O, Fatimah W., Differentiation of bovine and porcine gelatin based on spectroscopic and electrophoretic analysis. Journal of Food and Pharmaceutical Sciences,2013. 1: p. 68-73.
  • 17. Hossan, Md.J, Gafur, M.A, Kadir Md.R, Karim M.M. Preparation and characterization of gelatin- hydroxyapatite composite for bone tissue engineering. International Journal of Engineering & Technology Sciences, 2014, 14(01): p.24.
  • 18. Sun, X, Zheng, C, Zhang, F, Yang Y, Wu G, Yu A, Guan N. Size-controlled synthesis of magnetite (Fe3O4) nanoparticles coated with glucose and GA from a single Fe(III) precursor by a sucrose bifunctional hydrothermal method. Journal of Physics and Chemistry C, 2009. 113: p. 16002–16008.
  • 19. Gündüz F, Bayrak B., Synthesis and performance of pomegranate peel-supported zero-valent iron nanoparticles for adsorption of malachite green. Desalination Water Treatment, 2018. 110: p. 180–192.
  • 20. Xiao W, Jones AM, Collins RN, Bligh MW, Waite TD. Use of fourier transform infrared spectroscopy to examine the Fe(II)-Catalyzed transformation of ferrihydrite. Talanta, 2017, 175: p. 30–37.
  • 21. Ercan, G., Uzunoğlu, D., Ergüt, M., Özer, A., Biosynthesis and characterization of iron oxide nanoparticles from Enteromorpha spp. extract: determination of adsorbent properties for copper (II) ions. International Advanced Researches and Engineering Journal. 2019, 3(1): p. 65-74.
  • 22. Chen, J., Wu, L., Pan, T., Xie, J., Chen, H. A quantification method of glucose in aqueous solution by FTIR/ATR spectroscopy. Seventh International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2010)), 2010, p. 2159-2163.
There are 22 citations in total.

Details

Primary Language English
Subjects Biomedical Engineering
Journal Section Research Articles
Authors

Serkan Aktaş This is me 0000-0001-8196-9873

Özlem Korkut 0000-0002-1427-9183

Mustafa Erdem Sağsöz 0000-0002-3324-6942

Publication Date April 15, 2021
Submission Date July 11, 2020
Acceptance Date December 21, 2020
Published in Issue Year 2021 Volume: 5 Issue: 1

Cite

APA Aktaş, S., Korkut, Ö., & Sağsöz, M. E. (2021). Dose response of gluconic acid doped Fricke gels irradiated with X-rays. International Advanced Researches and Engineering Journal, 5(1), 47-52. https://doi.org/10.35860/iarej.768266
AMA Aktaş S, Korkut Ö, Sağsöz ME. Dose response of gluconic acid doped Fricke gels irradiated with X-rays. Int. Adv. Res. Eng. J. April 2021;5(1):47-52. doi:10.35860/iarej.768266
Chicago Aktaş, Serkan, Özlem Korkut, and Mustafa Erdem Sağsöz. “Dose Response of Gluconic Acid Doped Fricke Gels Irradiated With X-Rays”. International Advanced Researches and Engineering Journal 5, no. 1 (April 2021): 47-52. https://doi.org/10.35860/iarej.768266.
EndNote Aktaş S, Korkut Ö, Sağsöz ME (April 1, 2021) Dose response of gluconic acid doped Fricke gels irradiated with X-rays. International Advanced Researches and Engineering Journal 5 1 47–52.
IEEE S. Aktaş, Ö. Korkut, and M. E. Sağsöz, “Dose response of gluconic acid doped Fricke gels irradiated with X-rays”, Int. Adv. Res. Eng. J., vol. 5, no. 1, pp. 47–52, 2021, doi: 10.35860/iarej.768266.
ISNAD Aktaş, Serkan et al. “Dose Response of Gluconic Acid Doped Fricke Gels Irradiated With X-Rays”. International Advanced Researches and Engineering Journal 5/1 (April 2021), 47-52. https://doi.org/10.35860/iarej.768266.
JAMA Aktaş S, Korkut Ö, Sağsöz ME. Dose response of gluconic acid doped Fricke gels irradiated with X-rays. Int. Adv. Res. Eng. J. 2021;5:47–52.
MLA Aktaş, Serkan et al. “Dose Response of Gluconic Acid Doped Fricke Gels Irradiated With X-Rays”. International Advanced Researches and Engineering Journal, vol. 5, no. 1, 2021, pp. 47-52, doi:10.35860/iarej.768266.
Vancouver Aktaş S, Korkut Ö, Sağsöz ME. Dose response of gluconic acid doped Fricke gels irradiated with X-rays. Int. Adv. Res. Eng. J. 2021;5(1):47-52.



Creative Commons License

Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.