Research Article
BibTex RIS Cite
Year 2022, Volume: 6 Issue: 2, 90 - 99, 15.08.2022
https://doi.org/10.35860/iarej.1089568

Abstract

References

  • 1. Adam H., Carbon fibre in automotive applications. Materials and Design, 1997. 18(4–6): p. 349–355.
  • 2. Rajak D. K., D. D. Pagar, R. Kumar, and C. I. Pruncu, Recent progress of reinforcement materials: A comprehensive overview of composite materials. Journal of Materials Research and Technology, 2019. 8(6): p. 6354–6374.
  • 3. Ramli N., N. Mazlan, Y. Ando, Z. Leman, K. Abdan, A. A. Aziz, and N. A. Sairy, Natural fiber for green technology in automotive industry: A brief review. IOP Conference Series: Materials Science and Engineering, 2018. 368(1): p. 012012.
  • 4. Begum K. and M.A. Islam, Natural Fiber as a substitute to Synthetic Fiber in Polymer Composites:A Review. Research Journal of Engineering Sciences, 2013. 2(3): p. 46–53.
  • 5. Mohammed L., M. N. M. Ansari, G. Pua, M. Jawaid, and M. S. Islam, A Review on Natural Fiber Reinforced Polymer Composite and Its Applications. International Journal of Polymer Science, 2015. 2015: p. 1–15.
  • 6. Bledzki A. K. and J. Gassan, Composites reinforced with cellulose. Progress in Polymer Science, 1999. 24: p. 221–274.
  • 7. Ali A., M. A. Nasir, M. Y. Khalid, S. Nauman, K. Shaker, S. Khushnood, K. Altaf, M. Zeeshan and A. Hussain, Experimental and numerical characterization of mechanical properties of carbon/jute fabric reinforced epoxy hybrid composites. Journal of Mechanical Science and Technology, 2019. 33(9): p.4217–4226.
  • 8. Alves C., P. M. C. Ferrao, A. J. Silva, L. G. Reis, M. Freitas, L. B. Rodrigues, D. E. Alves, Ecodesign of automotive components making use of natural jute fiber composites. Journal of Cleaner Production, 2010. 18(4): p. 313–327.
  • 9. Keya K. N. , N. A. Kona, F. A. Koly, K. M. Maraz, M. N. Islam, and R. A. Khan, Natural fiber reinforced polymer composites: history, types, advantages, and applications. Materials Engineering Research, 2019. 1(2): p. 69–87.
  • 10. Mohanty A. K., M. Misra, and G. Hinrichsen, Biofibres, biodegradable polymers and biocomposites: An overview. Macromolecular Materials and Engineering, 2000. 276–277(1): p. 1–24.
  • 11. Drzal L. T., A. K. Mohanty, and M. Misra, Bio-composite materials as alternatives to glass fibre reinforced composites for automotive applications. Magnesium, 2001. 40: p. 386–390.
  • 12. Jeyanthi S. and J. J. Rani, Influence of natural long fiber in mechanical, thermal and recycling properties of thermoplastic composites in automotive components. International Journal of Physical Sciences, 2012. 7(43): p. 5765–5771.
  • 13. Holbery J. and D. Houston, Natural-fiber-reinforced polymer composites in automotive applications. JOM, 2006. 58(11): p. 80–86.
  • 14. Chimeremeze C. P. and O. D. Anayo, Economic Advantages and Sustainability of Basalt Civil / Structural Materials for Nigerian Modern Engineering Structures ; Positive Impact on Landfıllıng Construction. International Journal of Advances in Mechanical and Civil Engineering, 2019. 6(2): p. 45–51.
  • 15. Zhou H., B. Jia, H. Huang, and Y. Mou, Experimental Study on Basic Mechanical Properties of Basalt Fiber Reinforced Concrete. Materials, 2020. 13(6): p. 1362.
  • 16. Tóth L. F, J. Sukumaran, G. Szebenyi, A. Kalacska, D. Fauconnier, R. Nagarajan and P. De Baets, Large-scale tribological characterisation of eco-friendly basalt and jute fibre reinforced thermoset composites. Wear, 2020. 450–451(March): p. 203274.
  • 17. Yuvaraj M., M. Rajmohan, G. Naveen, and S. Mohanraj, Mechanical Characterisation of Basalt Based Composite Materials. Proceedings of the IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE), 2014. (November): p. 70–76.
  • 18. Bahrami M., J. Abenojar, and M. Á. Martínez, Recent Progress in Hybrid Biocomposites: Mechanical Properties, Water Absorption, and Flame Retardancy. Materials, 2020. 13(22): p. 5145.
  • 19. Cangül S., Ö. Adıgüzel, S. Tekin, F. Öztekin, and Ö. Satıcı, A Comparison of the Water Absorption and Water Solubility Values of Four Different Composite Resin Materials. Cumhuriyet Dental Journal, 2018. 21(4): p. 335–342.
  • 20. Fiore V., T. Scalici, F. Sarasini, J. Tirilló, and L. Calabrese, Salt-fog spray aging of jute-basalt reinforced hybrid structures: Flexural and low velocity impact response. Composites Part B: Engineering, 2017. 116: p. 99–112.
  • 21. Surana I., D. J. Pandya, N. H. Padmaraj, S. Hegde, and K. N. Chethan, Influence of filler material on mechanical and vibration properties of basalt/epoxy composites. Materials Research Express, 2019. 6(8): p. 085342.
  • 22. Kumar N. and A. Singh, Study the effect of fiber orientation on mechanical properties of bidirectional basalt fiber reinforced epoxy composites. Materials Today: Proceedings, 2021. 39: p. 1581–1587.
  • 23. Darshan S. M. and B. Suresha, Effect of basalt fiber hybridization on mechanical properties of silk fiber reinforced epoxy composites. Materials Today: Proceedings, 2021. 43: p. 986–994.
  • 24. Dhiman P. and H. Sharma, Effect of walnut shell filler on mechanical properties of jute-basalt hybrid epoxy composites. Materials Today: Proceedings, 2021. 44: p. 4537–4541.
  • 25. Kishore M., M. Amrita, and B. Kamesh, Tribological properties of basalt-jute hybrid composite with graphene as nanofiller. Materials Today: Proceedings, 2021. 43: p. 244–249.
  • 26. Alagarasan K., R. Ramkumar, and K. Dhanesh Prabu, Fabrication and Mechanical Testing of Natural ( Jute ) Fibre Composite Material. International Journal for Innovative Research in Science & Technology, 2016. 3(06): p. 78–83.
  • 27. Zareei N., A. Geranmayeh, and R. Eslami-Farsani, Interlaminar shear strength and tensile properties of environmentally-friendly fiber metal laminates reinforced by hybrid basalt and jute fibers. Polymer Testing, 2019. 75(February): p. 205–212.
  • 28. Almeida-Chetti V. A., R. L. Macchi, and M. E. Iglesias, Effect of post-curing treatment on mechanical properties of composite resins. Acta odontologica latinoamericana : AOL, 2014. 27(2): p. 72–76.
  • 29. Singh J. I. P., S. Singh, and V. Dhawan, Effect of Curing Temperature on Mechanical Properties of Natural Fiber Reinforced Polymer Composites. Journal of Natural Fibers, 2018. 15(5): p. 687–696.
  • 30. Ozkur S., M. Leskovšek, B. Golja, A. Demsar, H. Sezgin, and I. Yalcin-Enis, Characterization of Thermo-mechanical and Morphological Properties of Jute Fabric Reinforced Epoxy/AESO Bio-composites. Fibers and Polymers, 2021. 22(12): p. 3414–3424.
  • 31. Kumascı, Technical Properties of Jute(250 gr per metresquare). [cited 2021 28 Dec]; Available from https://www.kumasci.com/urun/kanavice-jut-telis-cuval-kumasi-ham-en-sik-jut-10-onz/1316.
  • 32. Kompozitshop, Techinical properties of basalt fiber. [cited 2021 28 Dec]; Available from: https://www.kompozitshop.com/bazalt-fiber-kumas-200grm2-plain.
  • 33. Kompozitshop, Epoxy and hardener. [cited 2021 28 Dec]; Available from: https: //www.kompozitshop.com/epoksi-recine-ve-sertlestirici.
  • 34. ASTM D3039/D3039-M Standard Test Method for Tensile Properties of Polymer Matrix Composite Material.
  • 35. ASTM E92-17 Standard Test Methods for Vickers Hardness and Knoop Hardness of Metallic Materials.
  • 36. ASTM D 5229/D 5229M – 92, Standard test method for moisture absorption properties and equilibrium conditioning of polymer matrix composite materials.
  • 37. Mann G. S., L. P. Singh, and P. Kumar, Experimental Investigation of Effect of Curing Temperature on Mechanical Properties of Hybrid Composites. International Journal of Technical Research & Science, 2020. 05(03): p. 10–15.
  • 38. Cao S., Z. Wu, and X. Wang, Tensile properties of CFRP and hybrid FRP composites at elevated temperatures. Journal of Composite Materials, 2009. 43(4): p. 315–330.
  • 39. Karacor B. and M. Özcanlı, Different Curing Temperature Effects on Mechanical Properties of Jute/Glass Fiber Reinforced Hybrid Composites. International Journal of Automotive Science and Technology, 2021. 5(4): p. 358–371.
  • 40. Aruniit A. , J. Kers, A. Krumme, T. Poltimäe, and K. Tall, Preliminary Study of the Influence of Post Curing Parameters to the Particle Reinforced Composite’s Mechanical and Physical Properties. Material Science(Medziagotyra), 2012. 18 (3): p. 256–261.
  • 41. Almansour F. A., H. N. Dhakal, and Z. Y. Zhang, Effect of water absorption on Mode I interlaminar fracture toughness of flax/basalt reinforced vinyl ester hybrid composites. Composite Structures, 2017. 168: p. 813–825.
  • 42. Ramesh Kumar S. C. , R. V. P. Kaviti, L. Mahesh, and B. M. Mohan Babu, Water absorption behavior of hybrid natural fiber reinforced composites. Materials Today: Proceedings, 2022. 54: p. 187-190.
  • 43. Ramesh M., R. Vimal, K. H. Hara Subramaniyan, C. Aswin, B. Ganesh, and C. Deepa, Study of Mechanical Properties of Jute-Banana-Glass Fiber Reinforced Epoxy Composites under Various Post Curing Temperature. Applied Mechanics and Materials, 2015. 766–767: p. 211–215.

Post curing temperature effect on mechanical characterization of jute/basalt fiber reinforced hybrid composites

Year 2022, Volume: 6 Issue: 2, 90 - 99, 15.08.2022
https://doi.org/10.35860/iarej.1089568

Abstract

Fiber-reinforced polymer composites have a fast-growing performance in many areas of engineering as a replacement for metallic materials due to their low density, low cost, specific mechanical characteristics, and lower energy consumption. The efficiency of fiber-reinforced polymer composites at high temperatures is an issue that requires to be well investigated before this type of composite can be used in important engineering fields. The aim of this study is to examine the change in mechanical properties of homogeneous and hybrid composites prepared from epoxy resin reinforced with jute fabric and basalt fabric at three diverse post-curing temperatures (50°C, 70°C, and 90°C). The vacuum- assisted resin transfer molding process was used to fabricate the laminated composites. The tensile strength and microhardness values of post- cured homogeneous and hybrid composite samples were determined by tensile tests and Vickers hardness measurements. A water absorption test was also performed to determine the water absorption capacity of the fabricated composites. After tensile testing of the fabricated structures, the effect of post-curing temperatures on the interaction of the fiber-matrix interface was investigated by scanning electron microscopy analysis. The results indicate that with increasing the post-curing temperature from 50 °C to 90 °C, an improvement of 45.48% in tensile strength and 34.65% in hardness is achieved for the hybrid composites. Moreover, the results of the water absorption test show that the increased post-curing temperature reduces the water absorption capacity of the hybrid composites by 3.53 times.

References

  • 1. Adam H., Carbon fibre in automotive applications. Materials and Design, 1997. 18(4–6): p. 349–355.
  • 2. Rajak D. K., D. D. Pagar, R. Kumar, and C. I. Pruncu, Recent progress of reinforcement materials: A comprehensive overview of composite materials. Journal of Materials Research and Technology, 2019. 8(6): p. 6354–6374.
  • 3. Ramli N., N. Mazlan, Y. Ando, Z. Leman, K. Abdan, A. A. Aziz, and N. A. Sairy, Natural fiber for green technology in automotive industry: A brief review. IOP Conference Series: Materials Science and Engineering, 2018. 368(1): p. 012012.
  • 4. Begum K. and M.A. Islam, Natural Fiber as a substitute to Synthetic Fiber in Polymer Composites:A Review. Research Journal of Engineering Sciences, 2013. 2(3): p. 46–53.
  • 5. Mohammed L., M. N. M. Ansari, G. Pua, M. Jawaid, and M. S. Islam, A Review on Natural Fiber Reinforced Polymer Composite and Its Applications. International Journal of Polymer Science, 2015. 2015: p. 1–15.
  • 6. Bledzki A. K. and J. Gassan, Composites reinforced with cellulose. Progress in Polymer Science, 1999. 24: p. 221–274.
  • 7. Ali A., M. A. Nasir, M. Y. Khalid, S. Nauman, K. Shaker, S. Khushnood, K. Altaf, M. Zeeshan and A. Hussain, Experimental and numerical characterization of mechanical properties of carbon/jute fabric reinforced epoxy hybrid composites. Journal of Mechanical Science and Technology, 2019. 33(9): p.4217–4226.
  • 8. Alves C., P. M. C. Ferrao, A. J. Silva, L. G. Reis, M. Freitas, L. B. Rodrigues, D. E. Alves, Ecodesign of automotive components making use of natural jute fiber composites. Journal of Cleaner Production, 2010. 18(4): p. 313–327.
  • 9. Keya K. N. , N. A. Kona, F. A. Koly, K. M. Maraz, M. N. Islam, and R. A. Khan, Natural fiber reinforced polymer composites: history, types, advantages, and applications. Materials Engineering Research, 2019. 1(2): p. 69–87.
  • 10. Mohanty A. K., M. Misra, and G. Hinrichsen, Biofibres, biodegradable polymers and biocomposites: An overview. Macromolecular Materials and Engineering, 2000. 276–277(1): p. 1–24.
  • 11. Drzal L. T., A. K. Mohanty, and M. Misra, Bio-composite materials as alternatives to glass fibre reinforced composites for automotive applications. Magnesium, 2001. 40: p. 386–390.
  • 12. Jeyanthi S. and J. J. Rani, Influence of natural long fiber in mechanical, thermal and recycling properties of thermoplastic composites in automotive components. International Journal of Physical Sciences, 2012. 7(43): p. 5765–5771.
  • 13. Holbery J. and D. Houston, Natural-fiber-reinforced polymer composites in automotive applications. JOM, 2006. 58(11): p. 80–86.
  • 14. Chimeremeze C. P. and O. D. Anayo, Economic Advantages and Sustainability of Basalt Civil / Structural Materials for Nigerian Modern Engineering Structures ; Positive Impact on Landfıllıng Construction. International Journal of Advances in Mechanical and Civil Engineering, 2019. 6(2): p. 45–51.
  • 15. Zhou H., B. Jia, H. Huang, and Y. Mou, Experimental Study on Basic Mechanical Properties of Basalt Fiber Reinforced Concrete. Materials, 2020. 13(6): p. 1362.
  • 16. Tóth L. F, J. Sukumaran, G. Szebenyi, A. Kalacska, D. Fauconnier, R. Nagarajan and P. De Baets, Large-scale tribological characterisation of eco-friendly basalt and jute fibre reinforced thermoset composites. Wear, 2020. 450–451(March): p. 203274.
  • 17. Yuvaraj M., M. Rajmohan, G. Naveen, and S. Mohanraj, Mechanical Characterisation of Basalt Based Composite Materials. Proceedings of the IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE), 2014. (November): p. 70–76.
  • 18. Bahrami M., J. Abenojar, and M. Á. Martínez, Recent Progress in Hybrid Biocomposites: Mechanical Properties, Water Absorption, and Flame Retardancy. Materials, 2020. 13(22): p. 5145.
  • 19. Cangül S., Ö. Adıgüzel, S. Tekin, F. Öztekin, and Ö. Satıcı, A Comparison of the Water Absorption and Water Solubility Values of Four Different Composite Resin Materials. Cumhuriyet Dental Journal, 2018. 21(4): p. 335–342.
  • 20. Fiore V., T. Scalici, F. Sarasini, J. Tirilló, and L. Calabrese, Salt-fog spray aging of jute-basalt reinforced hybrid structures: Flexural and low velocity impact response. Composites Part B: Engineering, 2017. 116: p. 99–112.
  • 21. Surana I., D. J. Pandya, N. H. Padmaraj, S. Hegde, and K. N. Chethan, Influence of filler material on mechanical and vibration properties of basalt/epoxy composites. Materials Research Express, 2019. 6(8): p. 085342.
  • 22. Kumar N. and A. Singh, Study the effect of fiber orientation on mechanical properties of bidirectional basalt fiber reinforced epoxy composites. Materials Today: Proceedings, 2021. 39: p. 1581–1587.
  • 23. Darshan S. M. and B. Suresha, Effect of basalt fiber hybridization on mechanical properties of silk fiber reinforced epoxy composites. Materials Today: Proceedings, 2021. 43: p. 986–994.
  • 24. Dhiman P. and H. Sharma, Effect of walnut shell filler on mechanical properties of jute-basalt hybrid epoxy composites. Materials Today: Proceedings, 2021. 44: p. 4537–4541.
  • 25. Kishore M., M. Amrita, and B. Kamesh, Tribological properties of basalt-jute hybrid composite with graphene as nanofiller. Materials Today: Proceedings, 2021. 43: p. 244–249.
  • 26. Alagarasan K., R. Ramkumar, and K. Dhanesh Prabu, Fabrication and Mechanical Testing of Natural ( Jute ) Fibre Composite Material. International Journal for Innovative Research in Science & Technology, 2016. 3(06): p. 78–83.
  • 27. Zareei N., A. Geranmayeh, and R. Eslami-Farsani, Interlaminar shear strength and tensile properties of environmentally-friendly fiber metal laminates reinforced by hybrid basalt and jute fibers. Polymer Testing, 2019. 75(February): p. 205–212.
  • 28. Almeida-Chetti V. A., R. L. Macchi, and M. E. Iglesias, Effect of post-curing treatment on mechanical properties of composite resins. Acta odontologica latinoamericana : AOL, 2014. 27(2): p. 72–76.
  • 29. Singh J. I. P., S. Singh, and V. Dhawan, Effect of Curing Temperature on Mechanical Properties of Natural Fiber Reinforced Polymer Composites. Journal of Natural Fibers, 2018. 15(5): p. 687–696.
  • 30. Ozkur S., M. Leskovšek, B. Golja, A. Demsar, H. Sezgin, and I. Yalcin-Enis, Characterization of Thermo-mechanical and Morphological Properties of Jute Fabric Reinforced Epoxy/AESO Bio-composites. Fibers and Polymers, 2021. 22(12): p. 3414–3424.
  • 31. Kumascı, Technical Properties of Jute(250 gr per metresquare). [cited 2021 28 Dec]; Available from https://www.kumasci.com/urun/kanavice-jut-telis-cuval-kumasi-ham-en-sik-jut-10-onz/1316.
  • 32. Kompozitshop, Techinical properties of basalt fiber. [cited 2021 28 Dec]; Available from: https://www.kompozitshop.com/bazalt-fiber-kumas-200grm2-plain.
  • 33. Kompozitshop, Epoxy and hardener. [cited 2021 28 Dec]; Available from: https: //www.kompozitshop.com/epoksi-recine-ve-sertlestirici.
  • 34. ASTM D3039/D3039-M Standard Test Method for Tensile Properties of Polymer Matrix Composite Material.
  • 35. ASTM E92-17 Standard Test Methods for Vickers Hardness and Knoop Hardness of Metallic Materials.
  • 36. ASTM D 5229/D 5229M – 92, Standard test method for moisture absorption properties and equilibrium conditioning of polymer matrix composite materials.
  • 37. Mann G. S., L. P. Singh, and P. Kumar, Experimental Investigation of Effect of Curing Temperature on Mechanical Properties of Hybrid Composites. International Journal of Technical Research & Science, 2020. 05(03): p. 10–15.
  • 38. Cao S., Z. Wu, and X. Wang, Tensile properties of CFRP and hybrid FRP composites at elevated temperatures. Journal of Composite Materials, 2009. 43(4): p. 315–330.
  • 39. Karacor B. and M. Özcanlı, Different Curing Temperature Effects on Mechanical Properties of Jute/Glass Fiber Reinforced Hybrid Composites. International Journal of Automotive Science and Technology, 2021. 5(4): p. 358–371.
  • 40. Aruniit A. , J. Kers, A. Krumme, T. Poltimäe, and K. Tall, Preliminary Study of the Influence of Post Curing Parameters to the Particle Reinforced Composite’s Mechanical and Physical Properties. Material Science(Medziagotyra), 2012. 18 (3): p. 256–261.
  • 41. Almansour F. A., H. N. Dhakal, and Z. Y. Zhang, Effect of water absorption on Mode I interlaminar fracture toughness of flax/basalt reinforced vinyl ester hybrid composites. Composite Structures, 2017. 168: p. 813–825.
  • 42. Ramesh Kumar S. C. , R. V. P. Kaviti, L. Mahesh, and B. M. Mohan Babu, Water absorption behavior of hybrid natural fiber reinforced composites. Materials Today: Proceedings, 2022. 54: p. 187-190.
  • 43. Ramesh M., R. Vimal, K. H. Hara Subramaniyan, C. Aswin, B. Ganesh, and C. Deepa, Study of Mechanical Properties of Jute-Banana-Glass Fiber Reinforced Epoxy Composites under Various Post Curing Temperature. Applied Mechanics and Materials, 2015. 766–767: p. 211–215.
There are 43 citations in total.

Details

Primary Language English
Subjects Engineering, Composite and Hybrid Materials, Material Production Technologies
Journal Section Research Articles
Authors

Berkay Karacor 0000-0001-5208-366X

Mustafa Özcanlı 0000-0001-6088-2912

Publication Date August 15, 2022
Submission Date March 18, 2022
Acceptance Date June 21, 2022
Published in Issue Year 2022 Volume: 6 Issue: 2

Cite

APA Karacor, B., & Özcanlı, M. (2022). Post curing temperature effect on mechanical characterization of jute/basalt fiber reinforced hybrid composites. International Advanced Researches and Engineering Journal, 6(2), 90-99. https://doi.org/10.35860/iarej.1089568
AMA Karacor B, Özcanlı M. Post curing temperature effect on mechanical characterization of jute/basalt fiber reinforced hybrid composites. Int. Adv. Res. Eng. J. August 2022;6(2):90-99. doi:10.35860/iarej.1089568
Chicago Karacor, Berkay, and Mustafa Özcanlı. “Post Curing Temperature Effect on Mechanical Characterization of jute/Basalt Fiber Reinforced Hybrid Composites”. International Advanced Researches and Engineering Journal 6, no. 2 (August 2022): 90-99. https://doi.org/10.35860/iarej.1089568.
EndNote Karacor B, Özcanlı M (August 1, 2022) Post curing temperature effect on mechanical characterization of jute/basalt fiber reinforced hybrid composites. International Advanced Researches and Engineering Journal 6 2 90–99.
IEEE B. Karacor and M. Özcanlı, “Post curing temperature effect on mechanical characterization of jute/basalt fiber reinforced hybrid composites”, Int. Adv. Res. Eng. J., vol. 6, no. 2, pp. 90–99, 2022, doi: 10.35860/iarej.1089568.
ISNAD Karacor, Berkay - Özcanlı, Mustafa. “Post Curing Temperature Effect on Mechanical Characterization of jute/Basalt Fiber Reinforced Hybrid Composites”. International Advanced Researches and Engineering Journal 6/2 (August 2022), 90-99. https://doi.org/10.35860/iarej.1089568.
JAMA Karacor B, Özcanlı M. Post curing temperature effect on mechanical characterization of jute/basalt fiber reinforced hybrid composites. Int. Adv. Res. Eng. J. 2022;6:90–99.
MLA Karacor, Berkay and Mustafa Özcanlı. “Post Curing Temperature Effect on Mechanical Characterization of jute/Basalt Fiber Reinforced Hybrid Composites”. International Advanced Researches and Engineering Journal, vol. 6, no. 2, 2022, pp. 90-99, doi:10.35860/iarej.1089568.
Vancouver Karacor B, Özcanlı M. Post curing temperature effect on mechanical characterization of jute/basalt fiber reinforced hybrid composites. Int. Adv. Res. Eng. J. 2022;6(2):90-9.



Creative Commons License

Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.