Review
BibTex RIS Cite
Year 2019, Volume: 2 Issue: 1, 15 - 26, 30.06.2019
https://doi.org/10.38061/idunas.578197

Abstract

References

  • Feynman, R. P. (1992). There's plenty of room at the bottom [data storage]. Journal of microelectromechanical systems, 1(1), 60-66.
  • Moore, G. E. (1998). Cramming more components onto integrated circuits. Proceedings of the IEEE, 86(1), 82-85.
  • Zahn, J. D. (2010). Methods in Bioengineering Biomicrofabrication and Biomicrofluidics, Artech House, ISBN-13: 978-1-59693-400-9.
  • Zhang, J. X., & Hoshino, K. (2018). Molecular Sensors and Nanodevices: Principles, Designs and Applications in Biomedical Engineering. Academic Press.
  • Wang, J., Pumera, M., Chatrathi, M. P., Escarpa, A., Konrad, R., Griebel, A., Dörner, W., & Löwe, H. (2002). Towards disposable lab‐on‐a chip: Poly (methylmethacrylate) microchip electrophoresis device with electrochemical detection. Electrophoresis, 23(4), 596-601.
  • Chin, C. D., Linder, V., & Sia, S. K. (2007). Lab-on-a-chip devices for global health: Past studies and future opportunities. Lab on a Chip, 7(1), 41 57.
  • Madou, M. J. (2011). Manufacturing techniques for microfabrication and nanotechnology (Vol. 2). CRC press.
  • Rebeiz, G. M. (2004). RF MEMS: theory, design, and technology. John Wiley & Sons.
  • Neukermans, A., & Ramaswami, R. (2001). MEMS technology for optical networking applications. IEEE Communications Magazine, 39(1), 62-69.
  • Lin, L. Y., & Goldstein, E. L. (2002). Opportunities and challenges for MEMS in lightwave communications. IEEE Journal of selected topics in quantum electronics, 8(1), 163-172.
  • Wang, W., & Soper, S. A. (2006). Bio-MEMS: technologies and applications. CRC press.
  • Tabeling, P. (2005). Introduction to microfluidics. Oxford University Press on Demand.
  • Mastrangelo, C. H., Burns, M. A., & Burke, D. T. (1998). Microfabricated devices for genetic diagnostics. Proceedings of the IEEE, 86(8), 1769-1787.
  • Santini, Jr, J. T., Richards, A. C., Scheidt, R., Cima, M. J., & Langer, R. (2000). Microchips as controlled drug‐delivery devices. Angewandte Chemie International Edition, 39(14), 2396-2407.
  • Thomas, D. J., Tehrani, Z., & Redfearn, B. (2016). 3-D printed composite microfluidic pump for wearable biomedical applications. Additive Manufacturing, 9, 30-38.
  • Su, W., Cook, B. S., & Tentzeris, M. M. (2016). Additively manufactured microfluidics-based “peel-and-replace” RF sensors for wearable applications. IEEE Transactions on Microwave Theory and Techniques, 64(6), 1928-1936.
  • Raya, R., Roa, J. O., Rocon, E., Ceres, R., & Pons, J. L. (2010). Wearable inertial mouse for children with physical and cognitive impairments. Sensors and Actuators A: Physical, 162(2), 248-259.
  • Lin, C. S., Hsu, H. C., Chiu, C. C., Lin, S. L., & Chao, C. S. (2006). A PDA based wearable system for real-time monitoring of human falls. IETE journal of research, 52(6), 403-416.
  • Georga, E. I., Protopappas, V. C., Bellos, C. V., & Fotiadis, D. I. (2014). Wearable systems and mobile applications for diabetes disease management. Health and Technology, 4(2), 101-112.
  • Hsu, Y. L., Chung, P. C., Wang, W. H., Pai, M. C., Wang, C. Y., Lin, C. W., Wu, H. L., & Wang, J. S. (2014). Gait and balance analysis for patients with Alzheimer's disease using an inertial-sensor-based wearable instrument. IEEE journal of biomedical and health informatics, 18(6), 1822-1830.
  • Mukhopadhyay, S. C. (2014). Wearable sensors for human activity monitoring: A review. IEEE sensors journal, 15(3), 1321-1330.
  • Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., & Amirat, Y. (2015). Physical human activity recognition using wearable sensors. Sensors, 15(12), 31314-31338.
  • Taylor, G. S., & Barnett, J. S. (2013). Evaluation of wearable simulation interface for military training. Human factors, 55(3), 672-690.
  • Venkatraman, S., & Yuen, S. G. J. (2015). U.S. Patent No. 8,998,815. Washington, DC: U.S. Patent and Trademark Office.
  • Yang, J., Wei, D., Tang, L., Song, X., Luo, W., Chu, J., Gao, T., Shi, H., & Du, C. (2015). Wearable temperature sensor based on graphene nanowalls. Rsc Advances, 5(32), 25609-25615.
  • He, H., Li, Y., Guan, Y., & Tan, J. (2015). Wearable ego-motion tracking for blind navigation in indoor environments. IEEE Transactions on Automation Science and Engineering, 12(4), 1181-1190.
  • Villa, F., Magnani, A., Maggioni, M., Stahn, A., Rampichini, S., Merati, G., & Castiglioni, P. (2016). Wearable multi-frequency and multi-segment bioelectrical impedance spectroscopy for unobtrusively tracking body fluid shifts during physical activity in real-field applications: a preliminary study. Sensors, 16(5), 673.
  • Karuei, I., Schneider, O. S., Stern, B., Chuang, M., & MacLean, K. E. (2014). RRACE: Robust realtime algorithm for cadence estimation. Pervasive and Mobile Computing, 13, 52-66.
  • Yi-Qiang, F. A. N., Feng, G. A. O., Mei, W., Zhuang, J., Gang, T., & Zhang, Y. J. (2017). Recent development of wearable microfluidics applied in body fluid testing and drug delivery. Chinese Journal of Analytical Chemistry, 45(3), 455-463.
  • Whitesides, G. M. (2006). The origins and the future of microfluidics. Nature, 442(7101), 368.
  • McDonald, J. C., Duffy, D. C., Anderson, J. R., Chiu, D. T., Wu, H., Schueller, O. J., & Whitesides, G. M. (2000). Fabrication of microfluidic systems in poly (dimethylsiloxane). ELECTROPHORESIS: An International Journal, 21(1), 27-40.
  • Lorenz, H., Despont, M., Fahrni, N., LaBianca, N., Renaud, P., & Vettiger, P. (1997). SU-8: a low-cost negative resist for MEMS. Journal of Micromechanics and Microengineering, 7(3), 121.
  • Haneveld, J., Jansen, H., Berenschot, E., Tas, N., & Elwenspoek, M. (2003). Wet anisotropic etching for fluidic 1D nanochannels. Journal of micromechanics and microengineering, 13(4), S62.
  • Nilsson, A., Petersson, F., Jönsson, H., & Laurell, T. (2004). Acoustic control of suspended particles in micro fluidic chips. Lab on a Chip, 4(2), 131-135.
  • Jiang, L., Mikkelsen, J., Koo, J. M., Huber, D., Yao, S., Zhang, L., Zhou, P., Maveety, J. G., Prasher, R., Santiago, J. G., Goodson, K. E., & Kenny, T. W. (2002). Closed-loop electroosmotic microchannel cooling system for VLSI circuits. IEEE Transactions on Components and Packaging Technologies, 25(3), 347-355.
  • Di Carlo, D., Jeong, K. H., & Lee, L. P. (2003). Reagentless mechanical cell lysis by nanoscale barbs in microchannels for sample preparation. Lab on a Chip, 3(4), 287-291.
  • Becker, H., & Heim, U. (2000). Hot embossing as a method for the fabrication of polymer high aspect ratio structures. Sensors and Actuators A: Physical, 83(1-3), 130-135.
  • McCormick, R. M., Nelson, R. J., Alonso-Amigo, M. G., Benvegnu, D. J., & Hooper, H. H. (1997). Microchannel electrophoretic separations of DNA in injection-molded plastic substrates. Analytical Chemistry, 69(14), 2626-2630.
  • Taylor, R. F., & Schultz, J. S. (Eds.). (1996). Handbook of chemical and biological sensors. CRC Press.
  • Williams, D. (2003). Revisiting the definition of biocompatibility. Medical device technology, 14(8), 10-13.
  • Freitas Jr, R. A. (2003). Nanomedicine, Vol. IIA: Biocompatibility. Karger Publishers.
  • Sutandy, F. R., Qian, J., Chen, C. S., & Zhu, H. (2013). Overview of protein microarrays. Current protocols in protein science, 72(1), 27-1.
  • Feyzkhanova, G. U., Filippova, M. A., Talibov, V. O., Dementieva, E. I., Maslennikov, V. V., Reznikov, Y. P., Offermann, N., Zasedatelev, A. S., Rubina, A. Y., & Fooke-Achterrath, M. (2014). Development of hydrogel biochip for in vitro allergy diagnostics. Journal of immunological methods, 406, 51-57.
  • Chang, Y. T., Yeh, Y. S., Ma, C. J., Huang, C. W., Tsai, H. L., Huang, M. Y., Cheng, T. L., & Wang, J. Y. (2017). Optimization of a multigene biochip for detection of relapsed and early relapsed colorectal cancer. journal of surgical research, 220, 427-437.
  • Leclerc, E., Hamon, J., Legendre, A., & Bois, F. Y. (2014). Integration of pharmacokinetic and NRF2 system biology models to describe reactive oxygen species production and subsequent glutathione depletion in liver microfluidic biochips after flutamide exposure. Toxicology in vitro, 28(7), 1230-1241.
  • Kemmler, M., Sauer, U., Schleicher, E., Preininger, C., & Brandenburg, A. (2014). Biochip point-of-care device for sepsis diagnostics. Sensors and Actuators B: Chemical, 192, 205-215.
  • Chiang, Y. C., Wang, H. H., Ramireddy, L., Chen, H. Y., Shih, C. M., Lin, C. K., & Tsen, H. Y. (2018). Designing a biochip following multiplex polymerase chain reaction for the detection of Salmonella serovars Typhimurium, Enteritidis, Infantis, Hadar, and Virchow in poultry products. journal of food and drug analysis, 26(1), 58-66.
  • Volokitina, M., Krutyakova, M., Sirotov, V., Larionov, M., Tennikova, T., & Korzhikova-Vlakh, E. (2019). Protein biochips based on macroporous polymer supports: Material properties and analytical potential. Journal of pharmaceutical and biomedical analysis, 165, 242-250.
  • Aydın, Y. (2012). İletken polimerlerin içerisinde enzim tutuklamasıyla yapılan biyosensörler (Yüksek Lisans Tezi, Karamanoğlu Mehmetbey Üniversitesi, Fen Bilimleri Enstitüsü).
  • Sassolas, A., Blum, L. J., & Leca-Bouvier, B. D. (2012). Immobilization strategies to develop enzymatic biosensors. Biotechnology advances, 30(3), 489-511.
  • Gulrajani, M. L., & Deepti, G. (2011). Emerging techniques for functional finishing of textiles.
  • Baudoin, R., Griscom, L., Prot, J. M., Legallais, C., & Leclerc, E. (2011). Behavior of HepG2/C3A cell cultures in a microfluidic bioreactor. Biochemical Engineering Journal, 53(2), 172-181.
  • Jellali, R., Paullier, P., Fleury, M. J., & Leclerc, E. (2016). Liver and kidney cells cultures in a new perfluoropolyether biochip. Sensors and Actuators B: Chemical, 229, 396-407.
  • Pu, Z., Zou, C., Wang, R., Lai, X., Yu, H., Xu, K., & Li, D. (2016). A continuous glucose monitoring device by graphene modified electrochemical sensor in microfluidic system. Biomicrofluidics, 10(1), 011910.
  • Kim, J., Valdés-Ramírez, G., Bandodkar, A. J., Jia, W., Martinez, A. G., Ramírez, J., Mercier, P., & Wang, J. (2014). Non-invasive mouthguard biosensor for continuous salivary monitoring of metabolites. Analyst, 139(7), 1632-1636.
  • Matzeu, G., O'Quigley, C., McNamara, E., Zuliani, C., Fay, C., Glennon, T., & Diamond, D. (2016). An integrated sensing and wireless communications platform for sensing sodium in sweat. Analytical Methods, 8(1), 64-71.
  • Nyein, H. Y. Y., Gao, W., Shahpar, Z., Emaminejad, S., Challa, S., Chen, K., Fahad, H. M., Tai, L. C., Ota, H., Davis, R. W., & Javey, A. (2016). A wearable electrochemical platform for noninvasive simultaneous monitoring of Ca2+ and pH. ACS nano, 10(7), 7216-7224.
  • Curto, V. F., Fay, C., Coyle, S., Byrne, R., O’Toole, C., Barry, C., Hughes, S., Moyna, N., Diamond, D., & Benito-Lopez, F. (2012). Real-time sweat pH monitoring based on a wearable chemical barcode micro-fluidic platform incorporating ionic liquids. Sensors and Actuators B: Chemical, 171, 1327-1334.
  • Liu, G., Ho, C., Slappey, N., Zhou, Z., Snelgrove, S. E., Brown, M., Grabinski, A., Guo, X., Chen, Y., Miller, K., Kaya, T.,& Edwards, J. (2016). A wearable conductivity sensor for wireless real-time sweat monitoring. Sensors and Actuators B: Chemical, 227, 35-42.
  • Laranjeiro, R., Harinath, G., Burke, D., Braeckman, B. P., & Driscoll, M. (2017). Single swim sessions in C. elegans induce key features of mammalian exercise. BMC biology, 15(1), 30.
  • Hartman, J. H., Smith, L. L., Gordon, K. L., Laranjeiro, R., Driscoll, M., Sherwood, D. R., & Meyer, J. N. (2018). Swimming exercise and transient food deprivation in Caenorhabditis elegans promote mitochondrial maintenance and protect against chemical-induced mitotoxicity. Scientific reports, 8(1), 8359.
  • Asthana, J., Yadav, A. K., Pant, A., Pandey, S., Gupta, M. M., & Pandey, R. (2015). Specioside ameliorates oxidative stress and promotes longevity in Caenorhabditis elegans. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 169, 25-34.
  • Chuang, H. S., Kuo, W. J., Lee, C. L., Chu, I. H., & Chen, C. S. (2016). Exercise in an electrotactic flow chamber ameliorates age-related degeneration in Caenorhabditis elegans. Scientific reports, 6, 28064.
  • Bruen, D., Delaney, C., Florea, L., & Diamond, D. (2017). Glucose sensing for diabetes monitoring: recent developments. Sensors, 17(8), 1866.
  • Rebrin, K., Sheppard, N. F., & Steil, G. M. (2010). Interstitial Fluid Physiology as it Relates to Glucose Monitoring Technologies: Use of Subcutaneous Interstitial Fluid Glucose to Estimate Blood Glucose: Revisiting Delay and Sensor Offset. Journal of Diabetes Science and Technology, 4(5), 1087-1098.
  • Keenan, D. B., Mastrototaro, J. J., Weinzimer, S. A., & Steil, G. M. (2013). Interstitial fluid glucose time-lag correction for real-time continuous glucose monitoring. Biomedical signal processing and control, 8(1), 81-89.
  • Gowers, S. A., Curto, V. F., Seneci, C. A., Wang, C., Anastasova, S., Vadgama, P., Yang, G.Z., & Boutelle, M. G. (2015). 3D printed microfluidic device with integrated biosensors for online analysis of subcutaneous human microdialysate. Analytical chemistry, 87(15), 7763-7770.
  • Granger, D., Marsolais, M., Burry, J., & Laprade, R. (2003). Na+/H+ exchangers in the human eccrine sweat duct. American Journal of Physiology-Cell Physiology, 285(5), C1047-C1058.
  • Schyrr, B., Pasche, S., Scolan, E., Ischer, R., Ferrario, D., Porchet, J. A., & Voirin, G. (2014). Development of a polymer optical fiber pH sensor for on-body monitoring application. Sensors and Actuators B: Chemical, 194, 238-248.
  • Yan, L., Chang, Y. N., Yin, W., Liu, X., Xiao, D., Xing, G., Zhao, L., Gu, Z., & Zhao, Y. (2014). Biocompatible and flexible graphene oxide/upconversion nanoparticle hybrid film for optical pH sensing. Physical Chemistry Chemical Physics, 16(4), 1576-1582.
  • Coyle, S., Lau, K. T., Moyna, N., O'Gorman, D., Diamond, D., Di Francesco, F., Costanzo, D., Salvo, P., Trivella, M. G., De Rossi, D. E., & Taccini, N. (2010). BIOTEX—Biosensing textiles for personalised healthcare management. IEEE Transactions on Information Technology in Biomedicine, 14(2), 364-370.
  • Caldara, M., Colleoni, C., Guido, E., Re, V., & Rosace, G. (2016). Optical monitoring of sweat pH by a textile fabric wearable sensor based on covalently bonded litmus-3-glycidoxypropyltrimethoxysilane coating. Sensors and Actuators B: Chemical, 222, 213-220.
  • Tsioris, K., Tilburey, G. E., Murphy, A. R., Domachuk, P., Kaplan, D. L., & Omenetto, F. G. (2010). Functionalized‐Silk‐Based Active Optofluidic Devices. Advanced Functional Materials, 20(7), 1083-1089.
  • Xia, N., Hunt, T. P., Mayers, B. T., Alsberg, E., Whitesides, G. M., Westervelt, R. M., & Ingber, D. E. (2006). Combined microfluidic-micromagnetic separation of living cells in continuous flow. Biomedical microdevices, 8(4), 299.
  • Yung, C. W., Fiering, J., Mueller, A. J., & Ingber, D. E. (2009). Micromagnetic–microfluidic blood cleansing device. Lab on a Chip, 9(9), 1171-1177.
  • Furdui, V. I., Kariuki, J. K., & Harrison, D. J. (2003). Microfabricated electrolysis pump system for isolating rare cells in blood. Journal of Micromechanics and Microengineering, 13(4), S164.
  • Fang, B., Zborowski, M., & Moore, L. R. (1999). Detection of rare MCF‐7 breast carcinoma cells from mixtures of human peripheral leukocytes by magnetic deposition analysis. Cytometry: The Journal of the International Society for Analytical Cytology, 36(4), 294-302.

Biochips for Physical Exercise Studies

Year 2019, Volume: 2 Issue: 1, 15 - 26, 30.06.2019
https://doi.org/10.38061/idunas.578197

Abstract

In early 1990s, microfluidics technology was mainly aiming at the
manipulation of fluids in micro-scale and nanoscale. At present, with the
development of microfluidics, it has been widely used in the life science and
medical researches with significant achievements. The microfluidics technology
can be used in single cell capture, cell screening, and synthesis of
biomacromolecules. Some microfluidic chips have already been commercialized and
applied in disease detection, drug delivery and bioscience. However, the physical index oriented wearable
technology ignored another part of the most important indications in health
monitoring i.e. the body fluid. The body fluid in this review refers to the
blood, sweat, interstitial fluid, saliva, tears, and urine. The current medical
procedures for the testing of body fluid involve using highly sophisticated instrument
such as atomic absorption spectrometry, ion chromatography and gas
chromatograph for the detection of specific targets in body fluid. For correct detection of changes in body fluids, it
is necessary to intervene in body fluids naturally. Physical fatigue is known
to have a direct effect on body fluids. For this reason, microfluidic chips are
used in experiments after exercise. Also exercise; diabetes, cancer,
cardiovascular disease, muscle, immune, and age-related decline in cognitive
function have been documented against the protect. In addition, regular
physical exercise is the most powerful initiative known to have positive
effects on health and aging.

References

  • Feynman, R. P. (1992). There's plenty of room at the bottom [data storage]. Journal of microelectromechanical systems, 1(1), 60-66.
  • Moore, G. E. (1998). Cramming more components onto integrated circuits. Proceedings of the IEEE, 86(1), 82-85.
  • Zahn, J. D. (2010). Methods in Bioengineering Biomicrofabrication and Biomicrofluidics, Artech House, ISBN-13: 978-1-59693-400-9.
  • Zhang, J. X., & Hoshino, K. (2018). Molecular Sensors and Nanodevices: Principles, Designs and Applications in Biomedical Engineering. Academic Press.
  • Wang, J., Pumera, M., Chatrathi, M. P., Escarpa, A., Konrad, R., Griebel, A., Dörner, W., & Löwe, H. (2002). Towards disposable lab‐on‐a chip: Poly (methylmethacrylate) microchip electrophoresis device with electrochemical detection. Electrophoresis, 23(4), 596-601.
  • Chin, C. D., Linder, V., & Sia, S. K. (2007). Lab-on-a-chip devices for global health: Past studies and future opportunities. Lab on a Chip, 7(1), 41 57.
  • Madou, M. J. (2011). Manufacturing techniques for microfabrication and nanotechnology (Vol. 2). CRC press.
  • Rebeiz, G. M. (2004). RF MEMS: theory, design, and technology. John Wiley & Sons.
  • Neukermans, A., & Ramaswami, R. (2001). MEMS technology for optical networking applications. IEEE Communications Magazine, 39(1), 62-69.
  • Lin, L. Y., & Goldstein, E. L. (2002). Opportunities and challenges for MEMS in lightwave communications. IEEE Journal of selected topics in quantum electronics, 8(1), 163-172.
  • Wang, W., & Soper, S. A. (2006). Bio-MEMS: technologies and applications. CRC press.
  • Tabeling, P. (2005). Introduction to microfluidics. Oxford University Press on Demand.
  • Mastrangelo, C. H., Burns, M. A., & Burke, D. T. (1998). Microfabricated devices for genetic diagnostics. Proceedings of the IEEE, 86(8), 1769-1787.
  • Santini, Jr, J. T., Richards, A. C., Scheidt, R., Cima, M. J., & Langer, R. (2000). Microchips as controlled drug‐delivery devices. Angewandte Chemie International Edition, 39(14), 2396-2407.
  • Thomas, D. J., Tehrani, Z., & Redfearn, B. (2016). 3-D printed composite microfluidic pump for wearable biomedical applications. Additive Manufacturing, 9, 30-38.
  • Su, W., Cook, B. S., & Tentzeris, M. M. (2016). Additively manufactured microfluidics-based “peel-and-replace” RF sensors for wearable applications. IEEE Transactions on Microwave Theory and Techniques, 64(6), 1928-1936.
  • Raya, R., Roa, J. O., Rocon, E., Ceres, R., & Pons, J. L. (2010). Wearable inertial mouse for children with physical and cognitive impairments. Sensors and Actuators A: Physical, 162(2), 248-259.
  • Lin, C. S., Hsu, H. C., Chiu, C. C., Lin, S. L., & Chao, C. S. (2006). A PDA based wearable system for real-time monitoring of human falls. IETE journal of research, 52(6), 403-416.
  • Georga, E. I., Protopappas, V. C., Bellos, C. V., & Fotiadis, D. I. (2014). Wearable systems and mobile applications for diabetes disease management. Health and Technology, 4(2), 101-112.
  • Hsu, Y. L., Chung, P. C., Wang, W. H., Pai, M. C., Wang, C. Y., Lin, C. W., Wu, H. L., & Wang, J. S. (2014). Gait and balance analysis for patients with Alzheimer's disease using an inertial-sensor-based wearable instrument. IEEE journal of biomedical and health informatics, 18(6), 1822-1830.
  • Mukhopadhyay, S. C. (2014). Wearable sensors for human activity monitoring: A review. IEEE sensors journal, 15(3), 1321-1330.
  • Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., & Amirat, Y. (2015). Physical human activity recognition using wearable sensors. Sensors, 15(12), 31314-31338.
  • Taylor, G. S., & Barnett, J. S. (2013). Evaluation of wearable simulation interface for military training. Human factors, 55(3), 672-690.
  • Venkatraman, S., & Yuen, S. G. J. (2015). U.S. Patent No. 8,998,815. Washington, DC: U.S. Patent and Trademark Office.
  • Yang, J., Wei, D., Tang, L., Song, X., Luo, W., Chu, J., Gao, T., Shi, H., & Du, C. (2015). Wearable temperature sensor based on graphene nanowalls. Rsc Advances, 5(32), 25609-25615.
  • He, H., Li, Y., Guan, Y., & Tan, J. (2015). Wearable ego-motion tracking for blind navigation in indoor environments. IEEE Transactions on Automation Science and Engineering, 12(4), 1181-1190.
  • Villa, F., Magnani, A., Maggioni, M., Stahn, A., Rampichini, S., Merati, G., & Castiglioni, P. (2016). Wearable multi-frequency and multi-segment bioelectrical impedance spectroscopy for unobtrusively tracking body fluid shifts during physical activity in real-field applications: a preliminary study. Sensors, 16(5), 673.
  • Karuei, I., Schneider, O. S., Stern, B., Chuang, M., & MacLean, K. E. (2014). RRACE: Robust realtime algorithm for cadence estimation. Pervasive and Mobile Computing, 13, 52-66.
  • Yi-Qiang, F. A. N., Feng, G. A. O., Mei, W., Zhuang, J., Gang, T., & Zhang, Y. J. (2017). Recent development of wearable microfluidics applied in body fluid testing and drug delivery. Chinese Journal of Analytical Chemistry, 45(3), 455-463.
  • Whitesides, G. M. (2006). The origins and the future of microfluidics. Nature, 442(7101), 368.
  • McDonald, J. C., Duffy, D. C., Anderson, J. R., Chiu, D. T., Wu, H., Schueller, O. J., & Whitesides, G. M. (2000). Fabrication of microfluidic systems in poly (dimethylsiloxane). ELECTROPHORESIS: An International Journal, 21(1), 27-40.
  • Lorenz, H., Despont, M., Fahrni, N., LaBianca, N., Renaud, P., & Vettiger, P. (1997). SU-8: a low-cost negative resist for MEMS. Journal of Micromechanics and Microengineering, 7(3), 121.
  • Haneveld, J., Jansen, H., Berenschot, E., Tas, N., & Elwenspoek, M. (2003). Wet anisotropic etching for fluidic 1D nanochannels. Journal of micromechanics and microengineering, 13(4), S62.
  • Nilsson, A., Petersson, F., Jönsson, H., & Laurell, T. (2004). Acoustic control of suspended particles in micro fluidic chips. Lab on a Chip, 4(2), 131-135.
  • Jiang, L., Mikkelsen, J., Koo, J. M., Huber, D., Yao, S., Zhang, L., Zhou, P., Maveety, J. G., Prasher, R., Santiago, J. G., Goodson, K. E., & Kenny, T. W. (2002). Closed-loop electroosmotic microchannel cooling system for VLSI circuits. IEEE Transactions on Components and Packaging Technologies, 25(3), 347-355.
  • Di Carlo, D., Jeong, K. H., & Lee, L. P. (2003). Reagentless mechanical cell lysis by nanoscale barbs in microchannels for sample preparation. Lab on a Chip, 3(4), 287-291.
  • Becker, H., & Heim, U. (2000). Hot embossing as a method for the fabrication of polymer high aspect ratio structures. Sensors and Actuators A: Physical, 83(1-3), 130-135.
  • McCormick, R. M., Nelson, R. J., Alonso-Amigo, M. G., Benvegnu, D. J., & Hooper, H. H. (1997). Microchannel electrophoretic separations of DNA in injection-molded plastic substrates. Analytical Chemistry, 69(14), 2626-2630.
  • Taylor, R. F., & Schultz, J. S. (Eds.). (1996). Handbook of chemical and biological sensors. CRC Press.
  • Williams, D. (2003). Revisiting the definition of biocompatibility. Medical device technology, 14(8), 10-13.
  • Freitas Jr, R. A. (2003). Nanomedicine, Vol. IIA: Biocompatibility. Karger Publishers.
  • Sutandy, F. R., Qian, J., Chen, C. S., & Zhu, H. (2013). Overview of protein microarrays. Current protocols in protein science, 72(1), 27-1.
  • Feyzkhanova, G. U., Filippova, M. A., Talibov, V. O., Dementieva, E. I., Maslennikov, V. V., Reznikov, Y. P., Offermann, N., Zasedatelev, A. S., Rubina, A. Y., & Fooke-Achterrath, M. (2014). Development of hydrogel biochip for in vitro allergy diagnostics. Journal of immunological methods, 406, 51-57.
  • Chang, Y. T., Yeh, Y. S., Ma, C. J., Huang, C. W., Tsai, H. L., Huang, M. Y., Cheng, T. L., & Wang, J. Y. (2017). Optimization of a multigene biochip for detection of relapsed and early relapsed colorectal cancer. journal of surgical research, 220, 427-437.
  • Leclerc, E., Hamon, J., Legendre, A., & Bois, F. Y. (2014). Integration of pharmacokinetic and NRF2 system biology models to describe reactive oxygen species production and subsequent glutathione depletion in liver microfluidic biochips after flutamide exposure. Toxicology in vitro, 28(7), 1230-1241.
  • Kemmler, M., Sauer, U., Schleicher, E., Preininger, C., & Brandenburg, A. (2014). Biochip point-of-care device for sepsis diagnostics. Sensors and Actuators B: Chemical, 192, 205-215.
  • Chiang, Y. C., Wang, H. H., Ramireddy, L., Chen, H. Y., Shih, C. M., Lin, C. K., & Tsen, H. Y. (2018). Designing a biochip following multiplex polymerase chain reaction for the detection of Salmonella serovars Typhimurium, Enteritidis, Infantis, Hadar, and Virchow in poultry products. journal of food and drug analysis, 26(1), 58-66.
  • Volokitina, M., Krutyakova, M., Sirotov, V., Larionov, M., Tennikova, T., & Korzhikova-Vlakh, E. (2019). Protein biochips based on macroporous polymer supports: Material properties and analytical potential. Journal of pharmaceutical and biomedical analysis, 165, 242-250.
  • Aydın, Y. (2012). İletken polimerlerin içerisinde enzim tutuklamasıyla yapılan biyosensörler (Yüksek Lisans Tezi, Karamanoğlu Mehmetbey Üniversitesi, Fen Bilimleri Enstitüsü).
  • Sassolas, A., Blum, L. J., & Leca-Bouvier, B. D. (2012). Immobilization strategies to develop enzymatic biosensors. Biotechnology advances, 30(3), 489-511.
  • Gulrajani, M. L., & Deepti, G. (2011). Emerging techniques for functional finishing of textiles.
  • Baudoin, R., Griscom, L., Prot, J. M., Legallais, C., & Leclerc, E. (2011). Behavior of HepG2/C3A cell cultures in a microfluidic bioreactor. Biochemical Engineering Journal, 53(2), 172-181.
  • Jellali, R., Paullier, P., Fleury, M. J., & Leclerc, E. (2016). Liver and kidney cells cultures in a new perfluoropolyether biochip. Sensors and Actuators B: Chemical, 229, 396-407.
  • Pu, Z., Zou, C., Wang, R., Lai, X., Yu, H., Xu, K., & Li, D. (2016). A continuous glucose monitoring device by graphene modified electrochemical sensor in microfluidic system. Biomicrofluidics, 10(1), 011910.
  • Kim, J., Valdés-Ramírez, G., Bandodkar, A. J., Jia, W., Martinez, A. G., Ramírez, J., Mercier, P., & Wang, J. (2014). Non-invasive mouthguard biosensor for continuous salivary monitoring of metabolites. Analyst, 139(7), 1632-1636.
  • Matzeu, G., O'Quigley, C., McNamara, E., Zuliani, C., Fay, C., Glennon, T., & Diamond, D. (2016). An integrated sensing and wireless communications platform for sensing sodium in sweat. Analytical Methods, 8(1), 64-71.
  • Nyein, H. Y. Y., Gao, W., Shahpar, Z., Emaminejad, S., Challa, S., Chen, K., Fahad, H. M., Tai, L. C., Ota, H., Davis, R. W., & Javey, A. (2016). A wearable electrochemical platform for noninvasive simultaneous monitoring of Ca2+ and pH. ACS nano, 10(7), 7216-7224.
  • Curto, V. F., Fay, C., Coyle, S., Byrne, R., O’Toole, C., Barry, C., Hughes, S., Moyna, N., Diamond, D., & Benito-Lopez, F. (2012). Real-time sweat pH monitoring based on a wearable chemical barcode micro-fluidic platform incorporating ionic liquids. Sensors and Actuators B: Chemical, 171, 1327-1334.
  • Liu, G., Ho, C., Slappey, N., Zhou, Z., Snelgrove, S. E., Brown, M., Grabinski, A., Guo, X., Chen, Y., Miller, K., Kaya, T.,& Edwards, J. (2016). A wearable conductivity sensor for wireless real-time sweat monitoring. Sensors and Actuators B: Chemical, 227, 35-42.
  • Laranjeiro, R., Harinath, G., Burke, D., Braeckman, B. P., & Driscoll, M. (2017). Single swim sessions in C. elegans induce key features of mammalian exercise. BMC biology, 15(1), 30.
  • Hartman, J. H., Smith, L. L., Gordon, K. L., Laranjeiro, R., Driscoll, M., Sherwood, D. R., & Meyer, J. N. (2018). Swimming exercise and transient food deprivation in Caenorhabditis elegans promote mitochondrial maintenance and protect against chemical-induced mitotoxicity. Scientific reports, 8(1), 8359.
  • Asthana, J., Yadav, A. K., Pant, A., Pandey, S., Gupta, M. M., & Pandey, R. (2015). Specioside ameliorates oxidative stress and promotes longevity in Caenorhabditis elegans. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 169, 25-34.
  • Chuang, H. S., Kuo, W. J., Lee, C. L., Chu, I. H., & Chen, C. S. (2016). Exercise in an electrotactic flow chamber ameliorates age-related degeneration in Caenorhabditis elegans. Scientific reports, 6, 28064.
  • Bruen, D., Delaney, C., Florea, L., & Diamond, D. (2017). Glucose sensing for diabetes monitoring: recent developments. Sensors, 17(8), 1866.
  • Rebrin, K., Sheppard, N. F., & Steil, G. M. (2010). Interstitial Fluid Physiology as it Relates to Glucose Monitoring Technologies: Use of Subcutaneous Interstitial Fluid Glucose to Estimate Blood Glucose: Revisiting Delay and Sensor Offset. Journal of Diabetes Science and Technology, 4(5), 1087-1098.
  • Keenan, D. B., Mastrototaro, J. J., Weinzimer, S. A., & Steil, G. M. (2013). Interstitial fluid glucose time-lag correction for real-time continuous glucose monitoring. Biomedical signal processing and control, 8(1), 81-89.
  • Gowers, S. A., Curto, V. F., Seneci, C. A., Wang, C., Anastasova, S., Vadgama, P., Yang, G.Z., & Boutelle, M. G. (2015). 3D printed microfluidic device with integrated biosensors for online analysis of subcutaneous human microdialysate. Analytical chemistry, 87(15), 7763-7770.
  • Granger, D., Marsolais, M., Burry, J., & Laprade, R. (2003). Na+/H+ exchangers in the human eccrine sweat duct. American Journal of Physiology-Cell Physiology, 285(5), C1047-C1058.
  • Schyrr, B., Pasche, S., Scolan, E., Ischer, R., Ferrario, D., Porchet, J. A., & Voirin, G. (2014). Development of a polymer optical fiber pH sensor for on-body monitoring application. Sensors and Actuators B: Chemical, 194, 238-248.
  • Yan, L., Chang, Y. N., Yin, W., Liu, X., Xiao, D., Xing, G., Zhao, L., Gu, Z., & Zhao, Y. (2014). Biocompatible and flexible graphene oxide/upconversion nanoparticle hybrid film for optical pH sensing. Physical Chemistry Chemical Physics, 16(4), 1576-1582.
  • Coyle, S., Lau, K. T., Moyna, N., O'Gorman, D., Diamond, D., Di Francesco, F., Costanzo, D., Salvo, P., Trivella, M. G., De Rossi, D. E., & Taccini, N. (2010). BIOTEX—Biosensing textiles for personalised healthcare management. IEEE Transactions on Information Technology in Biomedicine, 14(2), 364-370.
  • Caldara, M., Colleoni, C., Guido, E., Re, V., & Rosace, G. (2016). Optical monitoring of sweat pH by a textile fabric wearable sensor based on covalently bonded litmus-3-glycidoxypropyltrimethoxysilane coating. Sensors and Actuators B: Chemical, 222, 213-220.
  • Tsioris, K., Tilburey, G. E., Murphy, A. R., Domachuk, P., Kaplan, D. L., & Omenetto, F. G. (2010). Functionalized‐Silk‐Based Active Optofluidic Devices. Advanced Functional Materials, 20(7), 1083-1089.
  • Xia, N., Hunt, T. P., Mayers, B. T., Alsberg, E., Whitesides, G. M., Westervelt, R. M., & Ingber, D. E. (2006). Combined microfluidic-micromagnetic separation of living cells in continuous flow. Biomedical microdevices, 8(4), 299.
  • Yung, C. W., Fiering, J., Mueller, A. J., & Ingber, D. E. (2009). Micromagnetic–microfluidic blood cleansing device. Lab on a Chip, 9(9), 1171-1177.
  • Furdui, V. I., Kariuki, J. K., & Harrison, D. J. (2003). Microfabricated electrolysis pump system for isolating rare cells in blood. Journal of Micromechanics and Microengineering, 13(4), S164.
  • Fang, B., Zborowski, M., & Moore, L. R. (1999). Detection of rare MCF‐7 breast carcinoma cells from mixtures of human peripheral leukocytes by magnetic deposition analysis. Cytometry: The Journal of the International Society for Analytical Cytology, 36(4), 294-302.
There are 77 citations in total.

Details

Primary Language English
Journal Section Derlemeler
Authors

Neşe Akpınar Kocakulak 0000-0001-5798-263X

İbrahim Ünal 0000-0001-9392-8307

Publication Date June 30, 2019
Acceptance Date June 28, 2019
Published in Issue Year 2019 Volume: 2 Issue: 1

Cite

APA Akpınar Kocakulak, N., & Ünal, İ. (2019). Biochips for Physical Exercise Studies. Natural and Applied Sciences Journal, 2(1), 15-26. https://doi.org/10.38061/idunas.578197