Research Article
BibTex RIS Cite
Year 2024, Volume: 7 Issue: 2, 29 - 38, 27.12.2024
https://doi.org/10.38061/idunas.1491313

Abstract

References

  • 1. Altschul, S. (1997). Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research, 25(17), 3389–3402. https://doi.org/10.1093/nar/25.17.3389.
  • 2. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2.
  • 3. Chen, C.-C., Lai, C.-C., Huang, H.-L., Huang, W.-Y., Toh, H.-S., Weng, T.-C., Chuang, Y.-C., Lu, Y.-C., & Tang, H.-J. (2019). Antimicrobial Activity of Lactobacillus Species Against Carbapenem-Resistant Enterobacteriaceae. Frontiers in Microbiology, 10, 789. https://doi.org/10.3389/fmicb.2019.00789
  • 4. Colombo, M., Castilho, N. P. A., Todorov, S. D., & Nero, L. A. (2018). Beneficial properties of lactic acid bacteria naturally present in dairy production. BMC Microbiology, 18(1), 219. https://doi.org/10.1186/s12866-018-1356-8.
  • 5. De Giani, A., Bovio, F., Forcella, M., Fusi, P., Sello, G., & Di Gennaro, P. (2019). Identification of a bacteriocin-like compound from Lactobacillus plantarum with antimicrobial activity and effects on normal and cancerogenic human intestinal cells. AMB Express, 9(1), 88. https://doi.org/10.1186/s13568-019-0813-6.
  • 6. Elayaraja, S., Annamalai, N., Mayavu, P., & Balasubramanian, T. (2014). Production, purification and characterization of bacteriocin from Lactobacillus murinus AU06 and its broad antibacterial spectrum. Asian Pacific Journal of Tropical Biomedicine, 4, S305–S311. https://doi.org/10.12980/APJTB.4.2014C537.
  • 7. Goyal, C., Malik, R. K. & Pradhan, D. (2018). Purification and characterization of a broad spectrum bacteriocin produced by a selected Lactococcus lactis strain 63 isolated from Indian dairy products. Journal of Food Science and Technology, 55(9), 3683–3692. https://doi.org/10.1007/s13197-018-3298-4.
  • 8. Hashmi, I., Bindschedler, S. & Junier, P. (2020). Firmicutes. In Beneficial Microbes in Agro-Ecology (pp. 363–396). Elsevier. https://doi.org/10.1016/B978-0-12-823414-3.00018-6.
  • 9. Johnson, E. M., Jung, Dr. Y.-G., Jin, Dr. Y.-Y., Jayabalan, Dr. R., Yang, Dr. S. H. & Suh, J. W. (2018). Bacteriocins as food preservatives: Challenges and emerging horizons. Critical Reviews in Food Science and Nutrition, 58(16), 2743–2767. https://doi.org/10.1080/10408398.2017.1340870.
  • 10. Meade, E. Slattery, M. A. & Garvey, M. (2020). Bacteriocins, Potent Antimicrobial Peptides and the Fight against Multi Drug Resistant Species: Resistance Is Futile? Antibiotics, 9(1), 32. https://doi.org/10.3390/antibiotics9010032.
  • 11. Miao, J., Guo, H., Ou, Y., Liu, G., Fang, X., Liao, Z., Ke, C., Chen, Y., Zhao, L., & Cao, Y. (2014). Purification and characterization of bacteriocin F1, a novel bacteriocin produced by Lactobacillus paracasei subsp. Tolerans FX-6 from Tibetan kefir, a traditional fermented milk from Tibet, China. Food Control, 42, 48–53. https://doi.org/10.1016/j.foodcont.2014.01.041.
  • 12. Moghaddam, M. Z., . M. S., . A. M. M., & . F. D. (2006). Inhibitory Effect of Yogurt Lactobacilli Bacteriocins on Growth and Verotoxins Production of Enterohemorrhgic Escherichia coli O157:H7. Pakistan Journal of Biological Sciences, 9(11), 2112–2116. https://doi.org/10.3923/pjbs.2006.2112.2116.
  • 13. O’Connor, P. M., Kuniyoshi, T. M., Oliveira, R. P., Hill, C., Ross, R. P., & Cotter, P. D. (2020). Antimicrobials for food and feed; a bacteriocin perspective. Current Opinion in Biotechnology, 61, 160–167. https://doi.org/10.1016/j.copbio.2019.12.023.
  • 14. Sidhu, P. K., & Nehra, K. (2020). Isolation, screening and molecular Identification of bacteriocin producing lactic acid bacteria possessing wide spectrum antibacterial activity. Research Journal of Biotechnology, 15, 35–42.
  • 15. Sidhu, P. K. & Nehra, K. (2021). Bacteriocins of Lactic Acid Bacteria as Potent Antimicrobial Peptides against Food Pathogens. In M. K. Habib & C. Martín-Gómez (Eds.), Biomimetics. IntechOpen. https://doi.org/10.5772/intechopen.95747.
  • 16. Tambekar, D. H., &Bhutada, S. A. (2010). An Evaluation Of Probiotic Potential Of Lactobacillus Sp. From Milk of Domestic Animals and Commercial Available Probiotic Preparations In Prevention of Enteric Bacterial Infections. 7.
  • 17. Wang, Y., Zou, F., & Cegla, F. B. (2018). Acoustic waveguides: An attractive alternative for accurate and robust contact thermometry. Sensors and Actuators A: Physical, 270, 84–88. https://doi.org/10.1016/j.sna.2017.12.049.
  • 18. Yang, E., Fan, L., Jiang, Y., Doucette, C., & Fillmore, S. (2012). Antimicrobial activity of bacteriocin-producing lactic acid bacteria isolated from cheeses and yogurts. AMB Express, 2(1), 48. https://doi.org/10.1186/2191-0855-2-48.
  • 19. Yang, S.-C., Lin, C.-H., Sung, C. T., & Fang, J.-Y. (2014). Antibacterial activities of bacteriocins: Application in foods and pharmaceuticals. Frontiers in Microbiology, 5. https://doi.org/10.3389/fmicb.2014.00241.
  • 20. Zhang, J., Yang, Y., Yang, H., Bu, Y., Yi, H., Zhang, L., Han, X., & Ai, L. (2018). Purification and Partial Characterization of Bacteriocin Lac-B23, a Novel Bacteriocin Production by Lactobacillus plantarum J23, Isolated from Chinese Traditional Fermented Milk. Frontiers in Microbiology, 9, 2165. https://doi.org/10.3389/fmicb.2018.02165.

Bacteriocinogenic Activity of Lysinibacillus fusiformis NR_042072.1 Isolated from Cow Milk

Year 2024, Volume: 7 Issue: 2, 29 - 38, 27.12.2024
https://doi.org/10.38061/idunas.1491313

Abstract

The prevailing increase in the search for bio-preservative in the food industry has raised a global concern. Biological substances with health benefits and no toxicity are being considered as alternatives to chemical in food processing. Bacteriocin which are proteinous substances with preservative properties are now gaining attention in this regard and the search for new organisms for the production is becoming global. This study was focused on study of bacteriocinogenic activity of a local strain of Lysinibacillus fusiformis NR_042072.1 isolated from fresh cow milk obtained from Gaa Mobolohunduro, Tanke, Ilorin, Kwara State, Nigeria. Lactic acid bacteria was isolated from Cow milk, characterized and identified using standard microbiological methods. Bacteriocin was extracted from the isolate, partially purified and characterized using standard methods; and the antibacterial activity against some food borne bacteria which are Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Bacillus subtilis was determined using agar well diffusion method. Effect of certain physicochemical parameters on the antibacterial activity of the bacteriocin was also determined. The isolate was identified as Lysinibacillus fusiformis NR_042072.1. The bacteriocin showed antibacterial action against Escherichia coli and Pseudomonas aeruginosa with zone of inhibition of 17.0±0.5 and 20.0±1.0 mm against respectively. The bacteriocin was active within temperature of 4-50 0C, pH 5-7.5, bile salt concentration of 0.6-1.0 % and in the presence of the enzymes trypsin and pepsin. In conclusion, bacteriocin produced by Lysinibacillus fusiformis NR_042072.1 could be used to control food spoilage caused by the test organisms.

References

  • 1. Altschul, S. (1997). Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research, 25(17), 3389–3402. https://doi.org/10.1093/nar/25.17.3389.
  • 2. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2.
  • 3. Chen, C.-C., Lai, C.-C., Huang, H.-L., Huang, W.-Y., Toh, H.-S., Weng, T.-C., Chuang, Y.-C., Lu, Y.-C., & Tang, H.-J. (2019). Antimicrobial Activity of Lactobacillus Species Against Carbapenem-Resistant Enterobacteriaceae. Frontiers in Microbiology, 10, 789. https://doi.org/10.3389/fmicb.2019.00789
  • 4. Colombo, M., Castilho, N. P. A., Todorov, S. D., & Nero, L. A. (2018). Beneficial properties of lactic acid bacteria naturally present in dairy production. BMC Microbiology, 18(1), 219. https://doi.org/10.1186/s12866-018-1356-8.
  • 5. De Giani, A., Bovio, F., Forcella, M., Fusi, P., Sello, G., & Di Gennaro, P. (2019). Identification of a bacteriocin-like compound from Lactobacillus plantarum with antimicrobial activity and effects on normal and cancerogenic human intestinal cells. AMB Express, 9(1), 88. https://doi.org/10.1186/s13568-019-0813-6.
  • 6. Elayaraja, S., Annamalai, N., Mayavu, P., & Balasubramanian, T. (2014). Production, purification and characterization of bacteriocin from Lactobacillus murinus AU06 and its broad antibacterial spectrum. Asian Pacific Journal of Tropical Biomedicine, 4, S305–S311. https://doi.org/10.12980/APJTB.4.2014C537.
  • 7. Goyal, C., Malik, R. K. & Pradhan, D. (2018). Purification and characterization of a broad spectrum bacteriocin produced by a selected Lactococcus lactis strain 63 isolated from Indian dairy products. Journal of Food Science and Technology, 55(9), 3683–3692. https://doi.org/10.1007/s13197-018-3298-4.
  • 8. Hashmi, I., Bindschedler, S. & Junier, P. (2020). Firmicutes. In Beneficial Microbes in Agro-Ecology (pp. 363–396). Elsevier. https://doi.org/10.1016/B978-0-12-823414-3.00018-6.
  • 9. Johnson, E. M., Jung, Dr. Y.-G., Jin, Dr. Y.-Y., Jayabalan, Dr. R., Yang, Dr. S. H. & Suh, J. W. (2018). Bacteriocins as food preservatives: Challenges and emerging horizons. Critical Reviews in Food Science and Nutrition, 58(16), 2743–2767. https://doi.org/10.1080/10408398.2017.1340870.
  • 10. Meade, E. Slattery, M. A. & Garvey, M. (2020). Bacteriocins, Potent Antimicrobial Peptides and the Fight against Multi Drug Resistant Species: Resistance Is Futile? Antibiotics, 9(1), 32. https://doi.org/10.3390/antibiotics9010032.
  • 11. Miao, J., Guo, H., Ou, Y., Liu, G., Fang, X., Liao, Z., Ke, C., Chen, Y., Zhao, L., & Cao, Y. (2014). Purification and characterization of bacteriocin F1, a novel bacteriocin produced by Lactobacillus paracasei subsp. Tolerans FX-6 from Tibetan kefir, a traditional fermented milk from Tibet, China. Food Control, 42, 48–53. https://doi.org/10.1016/j.foodcont.2014.01.041.
  • 12. Moghaddam, M. Z., . M. S., . A. M. M., & . F. D. (2006). Inhibitory Effect of Yogurt Lactobacilli Bacteriocins on Growth and Verotoxins Production of Enterohemorrhgic Escherichia coli O157:H7. Pakistan Journal of Biological Sciences, 9(11), 2112–2116. https://doi.org/10.3923/pjbs.2006.2112.2116.
  • 13. O’Connor, P. M., Kuniyoshi, T. M., Oliveira, R. P., Hill, C., Ross, R. P., & Cotter, P. D. (2020). Antimicrobials for food and feed; a bacteriocin perspective. Current Opinion in Biotechnology, 61, 160–167. https://doi.org/10.1016/j.copbio.2019.12.023.
  • 14. Sidhu, P. K., & Nehra, K. (2020). Isolation, screening and molecular Identification of bacteriocin producing lactic acid bacteria possessing wide spectrum antibacterial activity. Research Journal of Biotechnology, 15, 35–42.
  • 15. Sidhu, P. K. & Nehra, K. (2021). Bacteriocins of Lactic Acid Bacteria as Potent Antimicrobial Peptides against Food Pathogens. In M. K. Habib & C. Martín-Gómez (Eds.), Biomimetics. IntechOpen. https://doi.org/10.5772/intechopen.95747.
  • 16. Tambekar, D. H., &Bhutada, S. A. (2010). An Evaluation Of Probiotic Potential Of Lactobacillus Sp. From Milk of Domestic Animals and Commercial Available Probiotic Preparations In Prevention of Enteric Bacterial Infections. 7.
  • 17. Wang, Y., Zou, F., & Cegla, F. B. (2018). Acoustic waveguides: An attractive alternative for accurate and robust contact thermometry. Sensors and Actuators A: Physical, 270, 84–88. https://doi.org/10.1016/j.sna.2017.12.049.
  • 18. Yang, E., Fan, L., Jiang, Y., Doucette, C., & Fillmore, S. (2012). Antimicrobial activity of bacteriocin-producing lactic acid bacteria isolated from cheeses and yogurts. AMB Express, 2(1), 48. https://doi.org/10.1186/2191-0855-2-48.
  • 19. Yang, S.-C., Lin, C.-H., Sung, C. T., & Fang, J.-Y. (2014). Antibacterial activities of bacteriocins: Application in foods and pharmaceuticals. Frontiers in Microbiology, 5. https://doi.org/10.3389/fmicb.2014.00241.
  • 20. Zhang, J., Yang, Y., Yang, H., Bu, Y., Yi, H., Zhang, L., Han, X., & Ai, L. (2018). Purification and Partial Characterization of Bacteriocin Lac-B23, a Novel Bacteriocin Production by Lactobacillus plantarum J23, Isolated from Chinese Traditional Fermented Milk. Frontiers in Microbiology, 9, 2165. https://doi.org/10.3389/fmicb.2018.02165.
There are 20 citations in total.

Details

Primary Language English
Subjects Zootechny (Other)
Journal Section Articles
Authors

Majekodunmi Adedayo 0000-0002-4266-7298

Taofeeq Abdulkareem 0000-0002-7430-7537

Publication Date December 27, 2024
Submission Date July 2, 2024
Acceptance Date November 30, 2024
Published in Issue Year 2024 Volume: 7 Issue: 2

Cite

APA Adedayo, M., & Abdulkareem, T. (2024). Bacteriocinogenic Activity of Lysinibacillus fusiformis NR_042072.1 Isolated from Cow Milk. Natural and Applied Sciences Journal, 7(2), 29-38. https://doi.org/10.38061/idunas.1491313