Research Article
BibTex RIS Cite

CLASSIFICATION OF THREE-DIMENSIONAL ZEROPOTENT ALGEBRAS

Year 2020, Volume: 27 Issue: 27, 127 - 146, 07.01.2020
https://doi.org/10.24330/ieja.662996

Abstract

The classification of three-dimensional zeropotent algebras over an arbitrary field is given. It is complete up to the individual properties of the ground field.

References

  • A. Fowler-Wright, The Classification of Three-Dimensional Lie Algebras, Ph.D. Thesis, The University of Warwick, Coventry, 2014.
  • Y. Kobayashi, K. Shirayanagi, S. Takahasi and M. Tsukada, Classification of three-dimensional zeropotent algebras over an algebraically closed field, Comm. Algebra, 45(12) (2017), 5037-5052.
  • E. N. Kuzmin, Binary Lie algebras of small dimension, Algebra and Logic, 37(3) (1998), 181-186.
  • K. Shirayanagi, S. Takahasi, M. Tsukada and Y. Kobayashi, Classification of three-dimensional zeropotent algebras over the real number eld, Comm.Algebra, 46(11) (2018), 4663-4681.
Year 2020, Volume: 27 Issue: 27, 127 - 146, 07.01.2020
https://doi.org/10.24330/ieja.662996

Abstract

References

  • A. Fowler-Wright, The Classification of Three-Dimensional Lie Algebras, Ph.D. Thesis, The University of Warwick, Coventry, 2014.
  • Y. Kobayashi, K. Shirayanagi, S. Takahasi and M. Tsukada, Classification of three-dimensional zeropotent algebras over an algebraically closed field, Comm. Algebra, 45(12) (2017), 5037-5052.
  • E. N. Kuzmin, Binary Lie algebras of small dimension, Algebra and Logic, 37(3) (1998), 181-186.
  • K. Shirayanagi, S. Takahasi, M. Tsukada and Y. Kobayashi, Classification of three-dimensional zeropotent algebras over the real number eld, Comm.Algebra, 46(11) (2018), 4663-4681.
There are 4 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Anton Cedilnik This is me

Marjan Jerman This is me

Publication Date January 7, 2020
Published in Issue Year 2020 Volume: 27 Issue: 27

Cite

APA Cedilnik, A., & Jerman, M. (2020). CLASSIFICATION OF THREE-DIMENSIONAL ZEROPOTENT ALGEBRAS. International Electronic Journal of Algebra, 27(27), 127-146. https://doi.org/10.24330/ieja.662996
AMA Cedilnik A, Jerman M. CLASSIFICATION OF THREE-DIMENSIONAL ZEROPOTENT ALGEBRAS. IEJA. January 2020;27(27):127-146. doi:10.24330/ieja.662996
Chicago Cedilnik, Anton, and Marjan Jerman. “CLASSIFICATION OF THREE-DIMENSIONAL ZEROPOTENT ALGEBRAS”. International Electronic Journal of Algebra 27, no. 27 (January 2020): 127-46. https://doi.org/10.24330/ieja.662996.
EndNote Cedilnik A, Jerman M (January 1, 2020) CLASSIFICATION OF THREE-DIMENSIONAL ZEROPOTENT ALGEBRAS. International Electronic Journal of Algebra 27 27 127–146.
IEEE A. Cedilnik and M. Jerman, “CLASSIFICATION OF THREE-DIMENSIONAL ZEROPOTENT ALGEBRAS”, IEJA, vol. 27, no. 27, pp. 127–146, 2020, doi: 10.24330/ieja.662996.
ISNAD Cedilnik, Anton - Jerman, Marjan. “CLASSIFICATION OF THREE-DIMENSIONAL ZEROPOTENT ALGEBRAS”. International Electronic Journal of Algebra 27/27 (January 2020), 127-146. https://doi.org/10.24330/ieja.662996.
JAMA Cedilnik A, Jerman M. CLASSIFICATION OF THREE-DIMENSIONAL ZEROPOTENT ALGEBRAS. IEJA. 2020;27:127–146.
MLA Cedilnik, Anton and Marjan Jerman. “CLASSIFICATION OF THREE-DIMENSIONAL ZEROPOTENT ALGEBRAS”. International Electronic Journal of Algebra, vol. 27, no. 27, 2020, pp. 127-46, doi:10.24330/ieja.662996.
Vancouver Cedilnik A, Jerman M. CLASSIFICATION OF THREE-DIMENSIONAL ZEROPOTENT ALGEBRAS. IEJA. 2020;27(27):127-46.