Research Article
BibTex RIS Cite

On vertex decomposability and regularity of graphs

Year 2023, Volume: 33 Issue: 33, 205 - 212, 09.01.2023
https://doi.org/10.24330/ieja.1217285

Abstract

There are two motivating questions in [M. Mahmoudi, A. Mousivand, M. Crupi, G. Rinaldo, N. Terai and S. Yassemi, arXiv:1006.1087v1] and [M. Mahmoudi, A. Mousivand, M. Crupi, G. Rinaldo, N. Terai and S. Yassemi, J. Pure Appl. Algebra, 215(10) (2011), 2473-2480] about Castelnuovo-Mumford regularity and vertex decomposability of simple graphs. In this paper, we give negative answers to the questions by providing two counterexamples.

References

  • H. N. Aziz, A. Mafi and F. Seyfpour, Bi-sequentially Cohen-Macaulay bipartite graphs, to appear in J. Algebra Appl., (2023).
  • J. Earl, K. N. Vander Meulen and A. Van Tuyl, Independence complexes of well-covered circulant Graphs, Exp. Math., 25(4) (2016), 441-451.
  • D. R. Grayson and M. E. Stillman, Macaulay2, a software system for research in algebraic geometry, Available at http://www.math.uiuc.edu/Macaulay2/.
  • H. T. Ha and A. Van Tuyl, Monomial ideals, edge ideals of hypergraphs, and their graded Betti numbers, J. Algebraic Combin., 27(2) (2008), 215-245.
  • J. Herzog and T. Hibi, Componentwise linear ideals, Nagoya Math. J., 153 (1999), 141-153.
  • J. Herzog and T. Hibi, Monomial Ideals, Graduate Texts in Mathematics, 260, Springer-Verlag London, Ltd., London, 2011.
  • H. Higashidaira, On the sequentially Cohen-Macaulay properties of almost complete multipartite graphs, Comm. Algebra, 45(6) (2017), 2478-2493.
  • M. Katzmann, Characteristic-independence of Betti numbers of graph ideals, J. Combin. Theory Ser. A, 113(3) (2006), 435-454.
  • F. Khosh-Ahang and S. Moradi, Regularity and projective dimension of the edge ideal of $C_5$-free vertex decomposable graphs, Proc. Amer. Math. Soc., 142(5) (2014), 1567-1576.
  • M. Kummini, Regularity, depth and arithmetic rank of bipartite edge ideals, J. Algebraic Combin., 30(4) (2009), 429-445.
  • M. Mahmoudi, A. Mousivand, M. Crupi, G. Rinaldo, N. Terai and S. Yassemi, Vertex decomposability and regularity of very well-covered graphs, arXiv:1006.1087v1.
  • M. Mahmoudi, A. Mousivand, M. Crupi, G. Rinaldo, N. Terai and S. Yassemi, Vertex decomposability and regularity of very well-covered graphs, J. Pure Appl. Algebra, 215(10) (2011), 2473-2480.
  • R. P. Stanley, Combinatorics and Commutative Algebra, Second edition, Progress in Mathematics, 41. Birkhäuser Boston, Inc., Boston, MA, 1996.
  • A. Van Tuyl, Sequentially Cohen-Macaulay bipartite graphs: vertex decomposability and regularity, Arch. Math. (Basel) 93(5) (2009), 451-459.
  • R. H. Villarreal, Cohen-Macaulay graphs, Manuscripta Math., 66(3) (1990), 277-293.
  • R. Woodroofe, Vertex decomposable graphs and obstructions to shellability, Proc. Amer. Math. Soc., 137(10) (2009), 3235-3246.
  • X. Zheng, Resolutions of facet ideals, Comm. Algebra, 32(6) (2004), 2301-2324.
Year 2023, Volume: 33 Issue: 33, 205 - 212, 09.01.2023
https://doi.org/10.24330/ieja.1217285

Abstract

References

  • H. N. Aziz, A. Mafi and F. Seyfpour, Bi-sequentially Cohen-Macaulay bipartite graphs, to appear in J. Algebra Appl., (2023).
  • J. Earl, K. N. Vander Meulen and A. Van Tuyl, Independence complexes of well-covered circulant Graphs, Exp. Math., 25(4) (2016), 441-451.
  • D. R. Grayson and M. E. Stillman, Macaulay2, a software system for research in algebraic geometry, Available at http://www.math.uiuc.edu/Macaulay2/.
  • H. T. Ha and A. Van Tuyl, Monomial ideals, edge ideals of hypergraphs, and their graded Betti numbers, J. Algebraic Combin., 27(2) (2008), 215-245.
  • J. Herzog and T. Hibi, Componentwise linear ideals, Nagoya Math. J., 153 (1999), 141-153.
  • J. Herzog and T. Hibi, Monomial Ideals, Graduate Texts in Mathematics, 260, Springer-Verlag London, Ltd., London, 2011.
  • H. Higashidaira, On the sequentially Cohen-Macaulay properties of almost complete multipartite graphs, Comm. Algebra, 45(6) (2017), 2478-2493.
  • M. Katzmann, Characteristic-independence of Betti numbers of graph ideals, J. Combin. Theory Ser. A, 113(3) (2006), 435-454.
  • F. Khosh-Ahang and S. Moradi, Regularity and projective dimension of the edge ideal of $C_5$-free vertex decomposable graphs, Proc. Amer. Math. Soc., 142(5) (2014), 1567-1576.
  • M. Kummini, Regularity, depth and arithmetic rank of bipartite edge ideals, J. Algebraic Combin., 30(4) (2009), 429-445.
  • M. Mahmoudi, A. Mousivand, M. Crupi, G. Rinaldo, N. Terai and S. Yassemi, Vertex decomposability and regularity of very well-covered graphs, arXiv:1006.1087v1.
  • M. Mahmoudi, A. Mousivand, M. Crupi, G. Rinaldo, N. Terai and S. Yassemi, Vertex decomposability and regularity of very well-covered graphs, J. Pure Appl. Algebra, 215(10) (2011), 2473-2480.
  • R. P. Stanley, Combinatorics and Commutative Algebra, Second edition, Progress in Mathematics, 41. Birkhäuser Boston, Inc., Boston, MA, 1996.
  • A. Van Tuyl, Sequentially Cohen-Macaulay bipartite graphs: vertex decomposability and regularity, Arch. Math. (Basel) 93(5) (2009), 451-459.
  • R. H. Villarreal, Cohen-Macaulay graphs, Manuscripta Math., 66(3) (1990), 277-293.
  • R. Woodroofe, Vertex decomposable graphs and obstructions to shellability, Proc. Amer. Math. Soc., 137(10) (2009), 3235-3246.
  • X. Zheng, Resolutions of facet ideals, Comm. Algebra, 32(6) (2004), 2301-2324.
There are 17 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Amir Mafı This is me

Dler Naderı This is me

Parasto Soufıvand This is me

Publication Date January 9, 2023
Published in Issue Year 2023 Volume: 33 Issue: 33

Cite

APA Mafı, A., Naderı, D., & Soufıvand, P. (2023). On vertex decomposability and regularity of graphs. International Electronic Journal of Algebra, 33(33), 205-212. https://doi.org/10.24330/ieja.1217285
AMA Mafı A, Naderı D, Soufıvand P. On vertex decomposability and regularity of graphs. IEJA. January 2023;33(33):205-212. doi:10.24330/ieja.1217285
Chicago Mafı, Amir, Dler Naderı, and Parasto Soufıvand. “On Vertex Decomposability and Regularity of Graphs”. International Electronic Journal of Algebra 33, no. 33 (January 2023): 205-12. https://doi.org/10.24330/ieja.1217285.
EndNote Mafı A, Naderı D, Soufıvand P (January 1, 2023) On vertex decomposability and regularity of graphs. International Electronic Journal of Algebra 33 33 205–212.
IEEE A. Mafı, D. Naderı, and P. Soufıvand, “On vertex decomposability and regularity of graphs”, IEJA, vol. 33, no. 33, pp. 205–212, 2023, doi: 10.24330/ieja.1217285.
ISNAD Mafı, Amir et al. “On Vertex Decomposability and Regularity of Graphs”. International Electronic Journal of Algebra 33/33 (January 2023), 205-212. https://doi.org/10.24330/ieja.1217285.
JAMA Mafı A, Naderı D, Soufıvand P. On vertex decomposability and regularity of graphs. IEJA. 2023;33:205–212.
MLA Mafı, Amir et al. “On Vertex Decomposability and Regularity of Graphs”. International Electronic Journal of Algebra, vol. 33, no. 33, 2023, pp. 205-12, doi:10.24330/ieja.1217285.
Vancouver Mafı A, Naderı D, Soufıvand P. On vertex decomposability and regularity of graphs. IEJA. 2023;33(33):205-12.