Research Article
BibTex RIS Cite
Year 2023, Volume: 33 Issue: 33, 178 - 204, 09.01.2023
https://doi.org/10.24330/ieja.1220707

Abstract

References

  • M. Aguiar, Infinitesimal Hopf algebras, Contemp. Math., 267 (2000), 1-29.
  • Ch. Brouder, Trees, renormalization and differential equations, BIT, 44(3) (2004), 425-438.
  • A. Connes and D. Kreimer, Hopf algebras, renormalization and non-commutative geometry, Comm. Math. Phys., 199(1) (1998), 203-242.
  • R. Diestel, Graph theory, 5th Edition, (English) Graduate Texts in Mathematics 173, Berlin, Springer, 2017.
  • L. Foissy, Les alg`ebres de Hopf des arbres enracin´es d´ecor´es I, Bull. Sci. Math., 126 (2002), 193-239.
  • L. Foissy, Bidendriform bialgebras, trees, and free quasi-symmetric functions, J. Pure Appl. Algebra, 209(2) (2007), 439-459.
  • L. Foissy, The infinitesimal Hopf algebra and the poset of planar forests, J. Algebraic Combin., 30(3) (2009), 277-309.
  • L. Foissy, Introduction to Hopf Algebra of Rooted Trees, available at http://loic. foissy. free. fr/pageperso/preprint3. pdf.
  • X. Gao and X. M. Wang, Infinitesimal unitary Hopf algebras and planar rooted forests, J. Algebraic Combin., 49(4) (2019), 437-460.
  • R. Grossman and R. G. Larson, Hopf-algebraic structure of families of trees, J. Algebra, 126(1) (1989), 184-210.
  • L. Guo, An Introduction to Rota-Baxter Algebra, Surveys of Modern Mathematics, 4. International Press, 2012.
  • M. Hoffman, Combinatorics of rooted trees and Hopf algebras, Trans. Amer. Math. Soc., 355(9) (2003), 3795-3811.
  • R. Holtkamp, Comparison of Hopf algebras on trees, Arch. Math. (Basel), 80(4) (2003), 368-383.
  • S. Joni and G.-C. Rota, Coalgebras and bialgebras in combinatorics, Stud. Appl. Math., 61(2) (1979), 93-139.
  • J.-L. Loday and M. O. Ronco, On the structure of cofree Hopf algebras, J. Reine Angew. Math., 592 (2006), 123-155.
  • F. Panaite, Relating the Connes-Kreimer and Grossman-Larson Hopf algebras built on rooted trees, Lett. Math. Phys., 51(3) (2000), 211-219.
  • T. J. Zhang, X. Gao and L. Guo, Hopf algebras of rooted forests, cocyles and free Rota-Baxter algebras, J. Math. Phys., 57(10) (2016), 101701 (16 pp).

The dual of infinitesimal unitary Hopf algebras and planar rooted forests

Year 2023, Volume: 33 Issue: 33, 178 - 204, 09.01.2023
https://doi.org/10.24330/ieja.1220707

Abstract

We study the infinitesimal (in the sense of Joni and Rota) bialgebra $H_{RT}$ of planar rooted trees introduced in a previous work
of two of the authors,
whose coproduct is given
by deletion of a vertex. We prove that its dual $H_{RT}^*$ is isomorphic to a free non unitary algebra, and give two free generating sets.
Giving $H_{RT}$ a second product, we make it an infinitesimal bialgebra in the sense of Loday and Ronco,
which allows to explicitly construct a projector onto its space of primitive elements, which freely generates $H_{RT}$.

References

  • M. Aguiar, Infinitesimal Hopf algebras, Contemp. Math., 267 (2000), 1-29.
  • Ch. Brouder, Trees, renormalization and differential equations, BIT, 44(3) (2004), 425-438.
  • A. Connes and D. Kreimer, Hopf algebras, renormalization and non-commutative geometry, Comm. Math. Phys., 199(1) (1998), 203-242.
  • R. Diestel, Graph theory, 5th Edition, (English) Graduate Texts in Mathematics 173, Berlin, Springer, 2017.
  • L. Foissy, Les alg`ebres de Hopf des arbres enracin´es d´ecor´es I, Bull. Sci. Math., 126 (2002), 193-239.
  • L. Foissy, Bidendriform bialgebras, trees, and free quasi-symmetric functions, J. Pure Appl. Algebra, 209(2) (2007), 439-459.
  • L. Foissy, The infinitesimal Hopf algebra and the poset of planar forests, J. Algebraic Combin., 30(3) (2009), 277-309.
  • L. Foissy, Introduction to Hopf Algebra of Rooted Trees, available at http://loic. foissy. free. fr/pageperso/preprint3. pdf.
  • X. Gao and X. M. Wang, Infinitesimal unitary Hopf algebras and planar rooted forests, J. Algebraic Combin., 49(4) (2019), 437-460.
  • R. Grossman and R. G. Larson, Hopf-algebraic structure of families of trees, J. Algebra, 126(1) (1989), 184-210.
  • L. Guo, An Introduction to Rota-Baxter Algebra, Surveys of Modern Mathematics, 4. International Press, 2012.
  • M. Hoffman, Combinatorics of rooted trees and Hopf algebras, Trans. Amer. Math. Soc., 355(9) (2003), 3795-3811.
  • R. Holtkamp, Comparison of Hopf algebras on trees, Arch. Math. (Basel), 80(4) (2003), 368-383.
  • S. Joni and G.-C. Rota, Coalgebras and bialgebras in combinatorics, Stud. Appl. Math., 61(2) (1979), 93-139.
  • J.-L. Loday and M. O. Ronco, On the structure of cofree Hopf algebras, J. Reine Angew. Math., 592 (2006), 123-155.
  • F. Panaite, Relating the Connes-Kreimer and Grossman-Larson Hopf algebras built on rooted trees, Lett. Math. Phys., 51(3) (2000), 211-219.
  • T. J. Zhang, X. Gao and L. Guo, Hopf algebras of rooted forests, cocyles and free Rota-Baxter algebras, J. Math. Phys., 57(10) (2016), 101701 (16 pp).
There are 17 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Xiaomeng Wang This is me

Loic Foıssy This is me

Xing Gao This is me

Publication Date January 9, 2023
Published in Issue Year 2023 Volume: 33 Issue: 33

Cite

APA Wang, X., Foıssy, L., & Gao, X. (2023). The dual of infinitesimal unitary Hopf algebras and planar rooted forests. International Electronic Journal of Algebra, 33(33), 178-204. https://doi.org/10.24330/ieja.1220707
AMA Wang X, Foıssy L, Gao X. The dual of infinitesimal unitary Hopf algebras and planar rooted forests. IEJA. January 2023;33(33):178-204. doi:10.24330/ieja.1220707
Chicago Wang, Xiaomeng, Loic Foıssy, and Xing Gao. “The Dual of Infinitesimal Unitary Hopf Algebras and Planar Rooted Forests”. International Electronic Journal of Algebra 33, no. 33 (January 2023): 178-204. https://doi.org/10.24330/ieja.1220707.
EndNote Wang X, Foıssy L, Gao X (January 1, 2023) The dual of infinitesimal unitary Hopf algebras and planar rooted forests. International Electronic Journal of Algebra 33 33 178–204.
IEEE X. Wang, L. Foıssy, and X. Gao, “The dual of infinitesimal unitary Hopf algebras and planar rooted forests”, IEJA, vol. 33, no. 33, pp. 178–204, 2023, doi: 10.24330/ieja.1220707.
ISNAD Wang, Xiaomeng et al. “The Dual of Infinitesimal Unitary Hopf Algebras and Planar Rooted Forests”. International Electronic Journal of Algebra 33/33 (January 2023), 178-204. https://doi.org/10.24330/ieja.1220707.
JAMA Wang X, Foıssy L, Gao X. The dual of infinitesimal unitary Hopf algebras and planar rooted forests. IEJA. 2023;33:178–204.
MLA Wang, Xiaomeng et al. “The Dual of Infinitesimal Unitary Hopf Algebras and Planar Rooted Forests”. International Electronic Journal of Algebra, vol. 33, no. 33, 2023, pp. 178-04, doi:10.24330/ieja.1220707.
Vancouver Wang X, Foıssy L, Gao X. The dual of infinitesimal unitary Hopf algebras and planar rooted forests. IEJA. 2023;33(33):178-204.