[1] Chen, B.Y., Deshmukh, S.: Yamabe and quasi-Yamabe solitons on Euclidean submanifolds. Mediter. J. Math. 15 (5) (2018), 194.
[2] Friedmann, A., Schouten, J. A.: Uber die geometrie der halbsymmetrischen ubertragungen. Math. Z. 21 (1) (1924), 211-223.
[3] Gezer, A.: On infinitesimal conformal transformations of the tangent bundles with the synectic lift of a Riemannian metric. Proc. Indian Acad. Sci.
119 (3) (2009), 345-350.
[4] Li, Y., Gezer, A., Karakas, E.: Some notes on the tangent bundle with a Ricci quarter-symmetric metric connection. AIMS Mathematics 8 (8) (2023),
17335–17353.
[5] Golab, S.: On semi-symmetric and quarter-symmetric linear connections. Tensor (N.S.) 29 (1975), 249–254.
[6] Guler, S., Crâ¸smareanu, M.: ˇ Ricci-Yamabe maps for Riemannian flow and their volume variation and volume entropy. Turkish J. Math. 43 (2019),
2631–2641.
[7] Hasegawa, I., Yamauchi, K.: Infinitesimal projective transformations on tangent bundles with lift connections. Sci. Math. Jpn. 57 (1) (2003),
469–483.
[8] Hayden, H. A.: Sub-spaces of a space with torsion. Proc. London Math. Soc. S2-34 (1932), 27-50.
[9] Hinterleitner, I., Kiosak, V. A.: φ(Ric)-vector fields in Riemannian spaces. Arch. Math. 44 (2008), 385–390.
[10] Kamilya, D., De, U. C.: Some properties of a Ricci quarter-symmetric metric connection in a Riemannian manifold. Indian J. Pure and Appl. Math.
26 (1) (1995), 29-34.
[11] Poyraz, N., Yoldas, H. I.: Chen inequalities for submanifolds of real space forms with a Ricci quarter-symmetric metric connection. Int. Electron. J.
Geom. 12 (1) (2019), 102–110.
[12] Sasaki, S.: On the differential geometry of tangent bundles of Riemannian manifolds. Tohoku Math. J. 10 (3) (1958), 338-354.
[13] Yamauchi, K.: On infinitesimal conformal transformations of the tangent bundles over Riemannian manifolds. Ann. Rep. Asahikawa Med. Coll.
15 (1994), 1-10.
[14] Yamauchi, K.: On infinitesimal projective transformations of the tangent bundles with the complete lift metric over Riemannian manifolds. Ann.
Rep. Asahikawa Med. Coll. 19 (1998), 49-55.
Consider $TM$ as the tangent bundle of a (pseudo-)Riemannian manifold $M$, equipped with a Ricci quarter-symmetric metric connection $\overline{\nabla }$. This research article aims to accomplish two primary objectives. Firstly, the paper undertakes the classification of specific types of vector fields, including incompressible vector fields, harmonic vector fields, concurrent vector fields, conformal vector fields, projective vector fields, and $% \widetilde{\varphi }(Ric)$ vector fields, within the framework of $\overline{% \nabla }$ on $T\dot{M}$. Secondly, the paper establishes the necessary and sufficient conditions for the tangent bundle $TM$ to become as a Riemannian soliton and a generalized Ricci-Yamabe soliton with regard to the connection $\overline{\nabla }$.
[1] Chen, B.Y., Deshmukh, S.: Yamabe and quasi-Yamabe solitons on Euclidean submanifolds. Mediter. J. Math. 15 (5) (2018), 194.
[2] Friedmann, A., Schouten, J. A.: Uber die geometrie der halbsymmetrischen ubertragungen. Math. Z. 21 (1) (1924), 211-223.
[3] Gezer, A.: On infinitesimal conformal transformations of the tangent bundles with the synectic lift of a Riemannian metric. Proc. Indian Acad. Sci.
119 (3) (2009), 345-350.
[4] Li, Y., Gezer, A., Karakas, E.: Some notes on the tangent bundle with a Ricci quarter-symmetric metric connection. AIMS Mathematics 8 (8) (2023),
17335–17353.
[5] Golab, S.: On semi-symmetric and quarter-symmetric linear connections. Tensor (N.S.) 29 (1975), 249–254.
[6] Guler, S., Crâ¸smareanu, M.: ˇ Ricci-Yamabe maps for Riemannian flow and their volume variation and volume entropy. Turkish J. Math. 43 (2019),
2631–2641.
[7] Hasegawa, I., Yamauchi, K.: Infinitesimal projective transformations on tangent bundles with lift connections. Sci. Math. Jpn. 57 (1) (2003),
469–483.
[8] Hayden, H. A.: Sub-spaces of a space with torsion. Proc. London Math. Soc. S2-34 (1932), 27-50.
[9] Hinterleitner, I., Kiosak, V. A.: φ(Ric)-vector fields in Riemannian spaces. Arch. Math. 44 (2008), 385–390.
[10] Kamilya, D., De, U. C.: Some properties of a Ricci quarter-symmetric metric connection in a Riemannian manifold. Indian J. Pure and Appl. Math.
26 (1) (1995), 29-34.
[11] Poyraz, N., Yoldas, H. I.: Chen inequalities for submanifolds of real space forms with a Ricci quarter-symmetric metric connection. Int. Electron. J.
Geom. 12 (1) (2019), 102–110.
[12] Sasaki, S.: On the differential geometry of tangent bundles of Riemannian manifolds. Tohoku Math. J. 10 (3) (1958), 338-354.
[13] Yamauchi, K.: On infinitesimal conformal transformations of the tangent bundles over Riemannian manifolds. Ann. Rep. Asahikawa Med. Coll.
15 (1994), 1-10.
[14] Yamauchi, K.: On infinitesimal projective transformations of the tangent bundles with the complete lift metric over Riemannian manifolds. Ann.
Rep. Asahikawa Med. Coll. 19 (1998), 49-55.
Gezer, A., & Karakaş, E. (2024). Classification of Vector Fields and Soliton Structures on a Tangent Bundle with a Ricci Quarter-Symmetric Metric Connection. International Electronic Journal of Geometry, 17(2), 358-377. https://doi.org/10.36890/iejg.1352531
AMA
Gezer A, Karakaş E. Classification of Vector Fields and Soliton Structures on a Tangent Bundle with a Ricci Quarter-Symmetric Metric Connection. Int. Electron. J. Geom. October 2024;17(2):358-377. doi:10.36890/iejg.1352531
Chicago
Gezer, Aydın, and Erkan Karakaş. “Classification of Vector Fields and Soliton Structures on a Tangent Bundle With a Ricci Quarter-Symmetric Metric Connection”. International Electronic Journal of Geometry 17, no. 2 (October 2024): 358-77. https://doi.org/10.36890/iejg.1352531.
EndNote
Gezer A, Karakaş E (October 1, 2024) Classification of Vector Fields and Soliton Structures on a Tangent Bundle with a Ricci Quarter-Symmetric Metric Connection. International Electronic Journal of Geometry 17 2 358–377.
IEEE
A. Gezer and E. Karakaş, “Classification of Vector Fields and Soliton Structures on a Tangent Bundle with a Ricci Quarter-Symmetric Metric Connection”, Int. Electron. J. Geom., vol. 17, no. 2, pp. 358–377, 2024, doi: 10.36890/iejg.1352531.
ISNAD
Gezer, Aydın - Karakaş, Erkan. “Classification of Vector Fields and Soliton Structures on a Tangent Bundle With a Ricci Quarter-Symmetric Metric Connection”. International Electronic Journal of Geometry 17/2 (October 2024), 358-377. https://doi.org/10.36890/iejg.1352531.
JAMA
Gezer A, Karakaş E. Classification of Vector Fields and Soliton Structures on a Tangent Bundle with a Ricci Quarter-Symmetric Metric Connection. Int. Electron. J. Geom. 2024;17:358–377.
MLA
Gezer, Aydın and Erkan Karakaş. “Classification of Vector Fields and Soliton Structures on a Tangent Bundle With a Ricci Quarter-Symmetric Metric Connection”. International Electronic Journal of Geometry, vol. 17, no. 2, 2024, pp. 358-77, doi:10.36890/iejg.1352531.
Vancouver
Gezer A, Karakaş E. Classification of Vector Fields and Soliton Structures on a Tangent Bundle with a Ricci Quarter-Symmetric Metric Connection. Int. Electron. J. Geom. 2024;17(2):358-77.