[1] De, U. C. and Biswas, S. C., Quarter-symmetric metric connection in an SP-Sasakian manifold, Commun. Fac. Sci. Univ. Ank. Series Al..
46(1997), 49-56.
[2] De, U. C. and Biswas, S. C., On a type of semi-symmetric metric connection on a Riemannian manifold, Publ. Inst. Math.(Beograd)(N. S. ).
61(1997), no.75, 90-96.
[3] De, U. C. and Kamilya, D., Hypersurfaces of Kenmotsu manifolds endowed with a quarter-symmetric non-metric connection , Kuwait J.
Sci. Eng.. 39( 2012), no.1A, 43-56.
[4] De, U. C. and Mondal, A. K., Quarter-symmetric metric connection on 3-dimensional quasi-Sasakian manifolds, SUT Journal of
Mathematics. 46(2010), no.1, 35-52.
[5] De, U. C. and Sengupta, J., On a type of semi-symmetric non-metric connection on a Riemannian manifold, Bull. Cal. Math. Soc..
92(2000),375-884.
[6] Fridman, A. and Schouten, J. A., Uber die Geometric der halb-symmerischen Ubertrngungen, Math.Zeitschift. 21(1924), 211-233.
[7] Han, Y. L., Ho, Tal Yun. and Zhao, P. B., Some invariants of quarter-symmetric metric connections under the projective transformation,
Filomat. 27(2013), no.4, 679-691.
[8] Han, Y. L., Ho, Tal Yun. and Zhao, P. B., A Schur’s lemma based on a semi-symmetric non-metric connection, International Journal of
Geometry. 5(2016), no.1, 47-53.
[9] Han, Y. L. and Zhao, P. B., A Class of nearly sub-Weyl and sub-Lyra Manifolds, accepted in International Electronic Journal of Geometry.
(2016).
[10] Hayden, H. A., Subspace of space with torsion, Proc. of London Math. Soc.. 24 (1932), 27-50.
[11] Stepanova, E. S., Dual symmetric statistical manifold. J. of Mathematical Sciences. 147(2007), no.1, 6507-6509.
[12] Yano, K., On semi-symmetric metric connection, Rev. Roun. Math. Purest. Appl.. 15(1971), 1579-1586.
[13] Yano, K. and Imai, J., Quarter-symmetric metric connection and their curvature tensors, Tensor. N. S.. 38(1982), 13-18.
[14] Ho, Tal Yun., On a semi-symmetric non-metric connection satisfying the Schur’s theorem on a Riemannian manifold, arXiv:1212,4748v1.
[15] Ho, Tal Yun., On the projective semi-symmetric connection and the conformal semi-symmetric connection on the Riemannian manifold,
J. of Kim Il Sung University (Natural Science). 2(2013), no.2, 3-10.
[16] Ho, Tal Yun., An, Jae Hyon and An, Chang Gil., Some properties of mutual connection of semi-symmetric metric connection and its dual
connection in a Riemannian manifold, Acta Scientiarum Naturalium Universtatis Nankaiensts. 46(2013), no.4, 1-8.
[17] Ho, Tal Yun., Jen, Cholyong and Jin, Guangzhi., A semi-symmetric projective conformal connection satisfying the Schur’s theorem on a
Riemannian manifold, J. of Yanbian University (Natural Science). 40(2014), no.4, 290-294.
[18] Zhao, P. B., Some properties of projective semi-symmetric connections, International Mathematical Forum. 3(2008), no. 7, 341-347.
[19] Zhao, P. B. and Song, H. Z., An invariant of the projective semi-symmetric connection, Chinese Quarterly J. of Math.. 17(2001), no. 4, 48-52.
[20] Zhao, P. B., Song, H. Z. and Yang, X. P., Some invariant properties of the semi-symmetric metric recurrent connections and curvature
tensor expressions, Chinese Quarterly J. of Math.. 19(2004), no. 4, 355-361.
Year 2017,
Volume: 10 Issue: 2, 37 - 45, 29.10.2017
[1] De, U. C. and Biswas, S. C., Quarter-symmetric metric connection in an SP-Sasakian manifold, Commun. Fac. Sci. Univ. Ank. Series Al..
46(1997), 49-56.
[2] De, U. C. and Biswas, S. C., On a type of semi-symmetric metric connection on a Riemannian manifold, Publ. Inst. Math.(Beograd)(N. S. ).
61(1997), no.75, 90-96.
[3] De, U. C. and Kamilya, D., Hypersurfaces of Kenmotsu manifolds endowed with a quarter-symmetric non-metric connection , Kuwait J.
Sci. Eng.. 39( 2012), no.1A, 43-56.
[4] De, U. C. and Mondal, A. K., Quarter-symmetric metric connection on 3-dimensional quasi-Sasakian manifolds, SUT Journal of
Mathematics. 46(2010), no.1, 35-52.
[5] De, U. C. and Sengupta, J., On a type of semi-symmetric non-metric connection on a Riemannian manifold, Bull. Cal. Math. Soc..
92(2000),375-884.
[6] Fridman, A. and Schouten, J. A., Uber die Geometric der halb-symmerischen Ubertrngungen, Math.Zeitschift. 21(1924), 211-233.
[7] Han, Y. L., Ho, Tal Yun. and Zhao, P. B., Some invariants of quarter-symmetric metric connections under the projective transformation,
Filomat. 27(2013), no.4, 679-691.
[8] Han, Y. L., Ho, Tal Yun. and Zhao, P. B., A Schur’s lemma based on a semi-symmetric non-metric connection, International Journal of
Geometry. 5(2016), no.1, 47-53.
[9] Han, Y. L. and Zhao, P. B., A Class of nearly sub-Weyl and sub-Lyra Manifolds, accepted in International Electronic Journal of Geometry.
(2016).
[10] Hayden, H. A., Subspace of space with torsion, Proc. of London Math. Soc.. 24 (1932), 27-50.
[11] Stepanova, E. S., Dual symmetric statistical manifold. J. of Mathematical Sciences. 147(2007), no.1, 6507-6509.
[12] Yano, K., On semi-symmetric metric connection, Rev. Roun. Math. Purest. Appl.. 15(1971), 1579-1586.
[13] Yano, K. and Imai, J., Quarter-symmetric metric connection and their curvature tensors, Tensor. N. S.. 38(1982), 13-18.
[14] Ho, Tal Yun., On a semi-symmetric non-metric connection satisfying the Schur’s theorem on a Riemannian manifold, arXiv:1212,4748v1.
[15] Ho, Tal Yun., On the projective semi-symmetric connection and the conformal semi-symmetric connection on the Riemannian manifold,
J. of Kim Il Sung University (Natural Science). 2(2013), no.2, 3-10.
[16] Ho, Tal Yun., An, Jae Hyon and An, Chang Gil., Some properties of mutual connection of semi-symmetric metric connection and its dual
connection in a Riemannian manifold, Acta Scientiarum Naturalium Universtatis Nankaiensts. 46(2013), no.4, 1-8.
[17] Ho, Tal Yun., Jen, Cholyong and Jin, Guangzhi., A semi-symmetric projective conformal connection satisfying the Schur’s theorem on a
Riemannian manifold, J. of Yanbian University (Natural Science). 40(2014), no.4, 290-294.
[18] Zhao, P. B., Some properties of projective semi-symmetric connections, International Mathematical Forum. 3(2008), no. 7, 341-347.
[19] Zhao, P. B. and Song, H. Z., An invariant of the projective semi-symmetric connection, Chinese Quarterly J. of Math.. 17(2001), no. 4, 48-52.
[20] Zhao, P. B., Song, H. Z. and Yang, X. P., Some invariant properties of the semi-symmetric metric recurrent connections and curvature
tensor expressions, Chinese Quarterly J. of Math.. 19(2004), no. 4, 355-361.
Tang, W., Ho, T. Y., Fu, F., Zhao, P. (2017). On a Quarter-Symmetric Projective Conformal Connection. International Electronic Journal of Geometry, 10(2), 37-45. https://doi.org/10.36890/iejg.545046
AMA
Tang W, Ho TY, Fu F, Zhao P. On a Quarter-Symmetric Projective Conformal Connection. Int. Electron. J. Geom. October 2017;10(2):37-45. doi:10.36890/iejg.545046
Chicago
Tang, Wanxiao, Tal Yun Ho, Fengyun Fu, and Peibiao Zhao. “On a Quarter-Symmetric Projective Conformal Connection”. International Electronic Journal of Geometry 10, no. 2 (October 2017): 37-45. https://doi.org/10.36890/iejg.545046.
EndNote
Tang W, Ho TY, Fu F, Zhao P (October 1, 2017) On a Quarter-Symmetric Projective Conformal Connection. International Electronic Journal of Geometry 10 2 37–45.
IEEE
W. Tang, T. Y. Ho, F. Fu, and P. Zhao, “On a Quarter-Symmetric Projective Conformal Connection”, Int. Electron. J. Geom., vol. 10, no. 2, pp. 37–45, 2017, doi: 10.36890/iejg.545046.
ISNAD
Tang, Wanxiao et al. “On a Quarter-Symmetric Projective Conformal Connection”. International Electronic Journal of Geometry 10/2 (October 2017), 37-45. https://doi.org/10.36890/iejg.545046.
JAMA
Tang W, Ho TY, Fu F, Zhao P. On a Quarter-Symmetric Projective Conformal Connection. Int. Electron. J. Geom. 2017;10:37–45.
MLA
Tang, Wanxiao et al. “On a Quarter-Symmetric Projective Conformal Connection”. International Electronic Journal of Geometry, vol. 10, no. 2, 2017, pp. 37-45, doi:10.36890/iejg.545046.
Vancouver
Tang W, Ho TY, Fu F, Zhao P. On a Quarter-Symmetric Projective Conformal Connection. Int. Electron. J. Geom. 2017;10(2):37-45.