int. electron. j. geom.
International Electronic Journal of Geometry
1307-5624
Kazım İLARSLAN
CLASSIFICATION OF HOMOTHETIC FUNCTIONS WITH CONSTANT ELASTICITY OF SUBSTITUTION AND ITS GEOMETRIC APPLICATIONS
Chen
Bang-yen
10
30
2012
5
2
67
78
05
01
2012
Copyright © 2008, International Electronic Journal of Geometry
2008
International Electronic Journal of Geometry
Homothetic production function
constant elasticity of substitution
generalized Cobb-Douglas production function
generalized ACMS production function
Gauss- Kronecker curvature
[
[1] R. G. Allen and J. R. Hicks, A reconsideration of the theory of value, Pt. II, Economica 1
(1934), 196–219.
]
[
[2] K. J. Arrow, H. B. Chenery, B. S. Minhas and R. M. Solow, Capital-labor substitution and
economic efficiency, Rev. Econom. Stat. 43 (1961), 225–250.
]
[
[3] B.-Y. Chen, Pseudo-Riemannian geometry, δ-invariants and applications, World Scientific,
Hackensack, New Jersey, 2011.
]
[
[4] B.-Y. Chen, On some geometric properties of h-homogeneous production function in micro-
economics, Kragujevac J. Math. 35 (2011), 343–357.
]
[
[5] B.-Y. Chen, On some geometric properties of quasi-sum production models, J. Math. Anal.
Appl. 392 (2012), 192–199.
]
[
[6] B.-Y. Chen, Classification of h-homogeneous production functions with constant elasticity of
substitution, Tamkang J. Math. 43 (2012), 321–328.
]
[
[7] P. H. Douglas, The Cobb-Douglas production function once again: Its history, its testing,
and some new empirical values, J. Polit. Econom. 84 (1976), 903–916.
]
[
[8] J. Filipe and G. Adams, The estimation of the Cobb-Douglas function, Eastern Econom. J.
31 (2005), 427–445.
]
[
[9] G. Hanoch, CRESH production functions, Econometrica 39 (1971), 695–712.
]
[
[10] C. W. Cobb and P. H. Douglas, A theory of production, Amer. Econom. Rev. 18 (1928), 139–165.
]
[
[11] J. R. Hicks, Theory of Wages, London, Macmillan, 1932.
]
[
[12] L. Losonczi, Production functions having the CES property, Acta Math. Acad. Paedagog.
Nyhzi. (N.S.) 26 (2010), 113–125.
]
[
[13] D. McFadden, Constant elasticity of substitution production functions, The Review of Eco-
nomic Studies 30 (1963), 73–83.
]
[
[14] R. C. Reilly, On the Hessian of a function and the curvature of its graph, Michigan Math.
J. 20 (1973), 373–383.
]
[
[15] A. D. Vˆılcu and G. E. Vˆılcu, On some geometric properties of the generalized CES production
functions, Appl. Math. Comput. 218 (2011), 124–129,
]
[
[16] G. E. Vˆılcu, A geometric perspective on the generalized Cobb-Douglas production functions,
Appl. Math. Lett. 24 (2011), 777–783.
]