Research Article
BibTex RIS Cite
Year 2019, Volume: 12 Issue: 2, 188 - 201, 03.10.2019
https://doi.org/10.36890/iejg.628080

Abstract

References

  • [1] Bácsó, S. and Matsumoto, M., On Finsler spaces of Douglas type, A generalization of notion of Berwald space. Publ. Math. Debrecen. 51(1997), 385-406.
  • [2] Bácsó, S. and Matsumoto, M., Finsler spaces with h-curvature tensor H dependent on position alone. Publ. Math. Debrecen. 55(1999), 199-210.
  • [3] Berwald, L., Über die n-dimensionalen Geometrien konstanter Krümmung, in denen die Geraden die kürzesten sind. Math. Z. 30(1929), 449-469.
  • [4] Berwald, L., Über Parallelübertragung in Räumen mit allgemeiner Massbestimmung. Jber. Deutsch. Math.-Verein. 34(1926), 213-220.
  • [5] Bidabad, B. and Tayebi, A., A classification of some Finsler connections. Publ. Math. Debrecen 71(2007), 253-260.
  • [6] Li, B. Shen, Y. and Shen, Z., On a class of Douglas metrics. Studia Sci. Math. Hungarica 46(3) (2009), 355-365.
  • [7] Matsumoto, M., An improvment proof of Numata and Shibata’s theorem on Finsler spaces of scalar curvature. Publ. Math. Debrecen 64(2004), 489-500.
  • [8] Matsumoto, M., On the stretch curvature of a Finsler space and certain open problems. J. Nat. Acad. Math. India 11(1997), 22-32.
  • [9] Najafi, B. and Tayebi, A., Weakly stretch Finsler metrics. Publ Math Debrecen 7761(2017), 1-14.
  • [10] Szilasi, Z., On the projective theory of sprays with applications to Finsler geometry, PhD Thesis, Debrecen (2010), arXiv:0908.4384.
  • [11] Tayebi, A. Azizpour, E. and Esrafilian, E., On a family of connections in Finsler geometry. Publ. Math. Debrecen 72(2008), 1-15.
  • [12] Tayebi, A. and Najafi, B., Shen’s processes on Finslerian connections. Bull. Iran. Math. Soc. 36(2) (2010), 57-73.
  • [13] Tayebi, A. and Najafi, B., Some curvature properties of (α, β)-metrics. Bulletin Mathematique de la Societe des Sciences Mathematiques de Roumanie Tome 60 (108) No. 3, (2017), 277-291.
  • [14] Tayebi, A. and Najafi, B., On a class of homogeneous Finsler metrics. J. Geom. Phys. 140 (2019), 265-270.
  • [15] Tayebi, A. and Razgordani, M., Four families of projectively flat Finsler metrics with K = 1 and their non-Riemannian curvature properties. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM. 112(2018), 1463-1485.
  • [16] Tayebi, A. and Razgordani, M., On conformally flat fourth root (α, β)-metrics. Differ. Geom. Appl. 62(2019) 253-266.
  • [17] Tayebi, A. and Sadeghi, H., On Cartan torsion of Finsler metric. Publ. Math. Debrecen 82(2) (2013), 461-471.
  • [18] Tayebi, A. and Sadeghi, H., On a class of stretch metrics in Finsler geometry. Arabian Journal of Mathematics 8(2019), 153-160.
  • [19] Tayebi, A. and Tabatabeifar, T., Dougals-Randers manifolds with vanishing stretch tensor. Publ Math Debrecen 86(2015), 423-432.
  • [20] Tayebi, A. and Tabatabeifar, T., Unicorn metrics with almost vanishing H- and Ξ-curvatures. Turkish J Math. 41(2017), 998-1008.

Douglas-Square Metrics with Vanishing Mean Stretch Curvature

Year 2019, Volume: 12 Issue: 2, 188 - 201, 03.10.2019
https://doi.org/10.36890/iejg.628080

Abstract


References

  • [1] Bácsó, S. and Matsumoto, M., On Finsler spaces of Douglas type, A generalization of notion of Berwald space. Publ. Math. Debrecen. 51(1997), 385-406.
  • [2] Bácsó, S. and Matsumoto, M., Finsler spaces with h-curvature tensor H dependent on position alone. Publ. Math. Debrecen. 55(1999), 199-210.
  • [3] Berwald, L., Über die n-dimensionalen Geometrien konstanter Krümmung, in denen die Geraden die kürzesten sind. Math. Z. 30(1929), 449-469.
  • [4] Berwald, L., Über Parallelübertragung in Räumen mit allgemeiner Massbestimmung. Jber. Deutsch. Math.-Verein. 34(1926), 213-220.
  • [5] Bidabad, B. and Tayebi, A., A classification of some Finsler connections. Publ. Math. Debrecen 71(2007), 253-260.
  • [6] Li, B. Shen, Y. and Shen, Z., On a class of Douglas metrics. Studia Sci. Math. Hungarica 46(3) (2009), 355-365.
  • [7] Matsumoto, M., An improvment proof of Numata and Shibata’s theorem on Finsler spaces of scalar curvature. Publ. Math. Debrecen 64(2004), 489-500.
  • [8] Matsumoto, M., On the stretch curvature of a Finsler space and certain open problems. J. Nat. Acad. Math. India 11(1997), 22-32.
  • [9] Najafi, B. and Tayebi, A., Weakly stretch Finsler metrics. Publ Math Debrecen 7761(2017), 1-14.
  • [10] Szilasi, Z., On the projective theory of sprays with applications to Finsler geometry, PhD Thesis, Debrecen (2010), arXiv:0908.4384.
  • [11] Tayebi, A. Azizpour, E. and Esrafilian, E., On a family of connections in Finsler geometry. Publ. Math. Debrecen 72(2008), 1-15.
  • [12] Tayebi, A. and Najafi, B., Shen’s processes on Finslerian connections. Bull. Iran. Math. Soc. 36(2) (2010), 57-73.
  • [13] Tayebi, A. and Najafi, B., Some curvature properties of (α, β)-metrics. Bulletin Mathematique de la Societe des Sciences Mathematiques de Roumanie Tome 60 (108) No. 3, (2017), 277-291.
  • [14] Tayebi, A. and Najafi, B., On a class of homogeneous Finsler metrics. J. Geom. Phys. 140 (2019), 265-270.
  • [15] Tayebi, A. and Razgordani, M., Four families of projectively flat Finsler metrics with K = 1 and their non-Riemannian curvature properties. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM. 112(2018), 1463-1485.
  • [16] Tayebi, A. and Razgordani, M., On conformally flat fourth root (α, β)-metrics. Differ. Geom. Appl. 62(2019) 253-266.
  • [17] Tayebi, A. and Sadeghi, H., On Cartan torsion of Finsler metric. Publ. Math. Debrecen 82(2) (2013), 461-471.
  • [18] Tayebi, A. and Sadeghi, H., On a class of stretch metrics in Finsler geometry. Arabian Journal of Mathematics 8(2019), 153-160.
  • [19] Tayebi, A. and Tabatabeifar, T., Dougals-Randers manifolds with vanishing stretch tensor. Publ Math Debrecen 86(2015), 423-432.
  • [20] Tayebi, A. and Tabatabeifar, T., Unicorn metrics with almost vanishing H- and Ξ-curvatures. Turkish J Math. 41(2017), 998-1008.
There are 20 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Akbar Tayebi This is me

Neda Izadian This is me

Publication Date October 3, 2019
Published in Issue Year 2019 Volume: 12 Issue: 2

Cite

APA Tayebi, A., & Izadian, N. (2019). Douglas-Square Metrics with Vanishing Mean Stretch Curvature. International Electronic Journal of Geometry, 12(2), 188-201. https://doi.org/10.36890/iejg.628080
AMA Tayebi A, Izadian N. Douglas-Square Metrics with Vanishing Mean Stretch Curvature. Int. Electron. J. Geom. October 2019;12(2):188-201. doi:10.36890/iejg.628080
Chicago Tayebi, Akbar, and Neda Izadian. “Douglas-Square Metrics With Vanishing Mean Stretch Curvature”. International Electronic Journal of Geometry 12, no. 2 (October 2019): 188-201. https://doi.org/10.36890/iejg.628080.
EndNote Tayebi A, Izadian N (October 1, 2019) Douglas-Square Metrics with Vanishing Mean Stretch Curvature. International Electronic Journal of Geometry 12 2 188–201.
IEEE A. Tayebi and N. Izadian, “Douglas-Square Metrics with Vanishing Mean Stretch Curvature”, Int. Electron. J. Geom., vol. 12, no. 2, pp. 188–201, 2019, doi: 10.36890/iejg.628080.
ISNAD Tayebi, Akbar - Izadian, Neda. “Douglas-Square Metrics With Vanishing Mean Stretch Curvature”. International Electronic Journal of Geometry 12/2 (October 2019), 188-201. https://doi.org/10.36890/iejg.628080.
JAMA Tayebi A, Izadian N. Douglas-Square Metrics with Vanishing Mean Stretch Curvature. Int. Electron. J. Geom. 2019;12:188–201.
MLA Tayebi, Akbar and Neda Izadian. “Douglas-Square Metrics With Vanishing Mean Stretch Curvature”. International Electronic Journal of Geometry, vol. 12, no. 2, 2019, pp. 188-01, doi:10.36890/iejg.628080.
Vancouver Tayebi A, Izadian N. Douglas-Square Metrics with Vanishing Mean Stretch Curvature. Int. Electron. J. Geom. 2019;12(2):188-201.