Research Article
BibTex RIS Cite

Comparison of Error Detection Capabilities of Equipment Used in Patient-Specific Quality Assurance in Intensity Modulated Radiotherapy

Year 2023, Issue: 19, 139 - 147, 29.04.2023
https://doi.org/10.38079/igusabder.1199555

Abstract

Aim: The aim of this study is to compare the error detection capabilities of film, in-vivo EPID dosimetry, and two-dimensional detectors used in patient-specific quality assurance of IMRT plans.
Method: Alderson Rando phantom was used in our study. In the first stage, two treatment plans were created on CT images of the Alderson Rando phantom. One of the created plans represents GBM treatment, while the other represents the treatment of the head and neck. These plans are called as the original plan. Then, the plans with errors were obtained by deliberately creating different types of errors. Quality controls of all plans were made with film, in-vivo EPID and 2D detectors. The obtained results were compared with the gamma analysis method.
Results: The original plans passed the gamma analysis for all methods. MLC error was detected by in vivo EPID dosimetry for head and neck irradiation. Errors related to machine calibration were caught in all methods. Errors related to fraction dose, gantry and collimator angle could not be determined by the methods used in the study.
Conclusions: There is no difference in error detection capabilities between film, 2D detectors and in-vivo EPID dosimeters, which are widely used in patient-specific quality control applications in IMRT treatments. All methods are sensitive to calibration errors. In-vivo EPID dosimetry comes to the fore in the detection of MLC errors. However, mechanical errors especially in the gantry and collimator could not be detected with the existing systems.

References

  • Huq MS, Fraass BA, Dunscombe PB, et al. The report of task group 100 of the AAPM: Application of risk analysis methods to radiation therapy quality management. Medical Physics. 2016;43(7):4209-4262.
  • Chuang K-C, Giles W, Adamson J. On the use of trajectory log files for machine & patient specific QA. Biomedical Physics & Engineering Express. 2020;7(1):015010.
  • Smith K, Balter P, Duhon J, et al. AAPM Medical Physics Practice Guideline 8. a.: linear accelerator performance tests. Journal of Applied Clinical Medical Physics. 2017;18(4):23-39.
  • Pan Y, Yang R, Zhang S, et al. National survey of patient specific IMRT quality assurance in China. Radiation Oncology. 2019;14(1):1-10.
  • Osman AF, Maalej NM. Applications of machine and deep learning to patient‐specific IMRT/VMAT quality assurance. Journal of Applied Clinical Medical Physics. 2021;22(9):20-36.
  • Rangaraj D, Zhu M, Yang D, et al. Catching errors with patient-specific pretreatment machine log file analysis. Practical Radiation Oncology. 2013;3(2):80-90.
  • Chan GH, Chin LC, Abdellatif A, et al. Survey of patient‐specific quality assurance practice for IMRT and VMAT. Journal of Applied Clinical Medical Physics. 2021;22(7):155-164.
  • Marrazzo L, Zani M, Pallotta S, et al. GafChromic® EBT3 films for patient specific IMRT QA using a multichannel approach. Physica Medica. 2015;31(8):1035-1042.
  • Stathakis S, Myers P, Esquivel C, Mavroidis P, Papanikolaou N. Characterization of a novel 2D array dosimeter for patient‐specific quality assurance with volumetric arc therapy. Medical Physics. 2013;40(7):071731.
  • Olaciregui‐Ruiz I, Vivas‐Maiques B, Kaas J, et al. Transit and non‐transit 3D EPID dosimetry versus detector arrays for patient specific QA. Journal of Applied Clinical Medical Physics. 2019;20(6):79-90.
  • Belanger P, Bercier Y, Parker W, Hristov D. A software system for patient-specific quality control of intensity-modulated radiation treatments by Fricke-gel dosimetry. The Use of Computers in Radiation Therapy: Springer; 2000:394-396.
  • Chuang KC, Giles W, Adamson J. A tool for patient‐specific prediction of delivery discrepancies in machine parameters using trajectory log files. Medical Physics. 2021;48(3):978-990.
  • Son J, Baek T, Lee B, et al. A comparison of the quality assurance of four dosimetric tools for intensity modulated radiation therapy. Radiology and Oncology. 2015;49(3):307-313.
  • Celi S, Costa E, Wessels C, Mazal A, Fourquet A, Francois P. EPID based in vivo dosimetry system: Clinical experience and results. Journal of Applied Clinical Medical Physics. 2016;17(3):262-276.
  • Ford EC, Terezakis S, Souranis A, Harris K, Gay H, Mutic S. Quality control quantification (QCQ): A tool to measure the value of quality control checks in radiation oncology. International Journal of Radiation Oncology* Biology* Physics. 2012;84(3):e263-e269.
  • Kutcher GJ, Coia L, Gillin M, et al. Comprehensive QA for radiation oncology: Report of AAPM radiation therapy committee task group 40. Medical Physics-Lancaster Pa-. 1994;21:581-581.
  • Thoelking J, Fleckenstein J, Sekar Y, et al. Patient-specific online dose verification based on transmission detector measurements. Radiotherapy and Oncology. 2016;119(2):351-356.
  • Liang B, Liu B, Zhou F, Yin FF, Wu Q. Comparisons of volumetric modulated arc therapy (VMAT) quality assurance (QA) systems: Sensitivity analysis to machine errors. Radiation Oncology. 2016;11(1):1-10.
  • Heilemann G, Poppe B, Laub W. On the sensitivity of common gamma‐index evaluation methods to MLC misalignments in rapidarc quality assurance. Medical Physics. 2013;40(3):031702.
  • Hussein M, Rowshanfarzad P, Ebert MA, Nisbet A, Clark CH. A comparison of the gamma index analysis in various commercial IMRT/VMAT QA systems. Radiotherapy and Oncology. 2013;109(3):370-376.
  • Woon W, Ravindran PB, Ekayanake P, Lim YY, Khalid J. A study on the effect of detector resolution on gamma index passing rate for VMAT and IMRT QA. Journal of Applied Clinical Medical Physics. 2018;19(2):230-248.
  • Hossain M. Output trends, characteristics, and measurements of three megavoltage radiotherapy linear accelerators. J Appl Clin Med Phys. 2014;15(4):4783.
  • Vieillevigne L, Molinier J, Brun T, Ferrand R. Gamma index comparison of three VMAT QA systems and evaluation of their sensitivity to delivery errors. Physica Medica. 2015;31(7):720-725.
  • Miften M, Olch A, Mihailidis D, et al. Tolerance limits and methodologies for IMRT measurement-based verification QA: Recommendations of AAPM Task Group No. 218. Medical Physics. 2018;45(4):e53-e83.
  • Xia Y, Adamson J, Zlateva Y, Giles W. Application of TG-218 action limits to SRS and SBRT pre-treatment patient specific QA. J Radiosurg SBRT. 2020;7(2):135-147.
  • Yedekci Y, Biltekin F, Ozyigit G. Feasibility study of an electronic portal imaging based in vivo dose verification system for prostate stereotactic body radiotherapy. Physica Medica. 2019;64:204-209.

Yoğunluk Ayarlı Radyoterapide Hastaya Özel Kalite Kontrol Uygulamalarında Kullanılan Gereçlerin Hata Tespit Yeteneklerinin Karşılaştırılması

Year 2023, Issue: 19, 139 - 147, 29.04.2023
https://doi.org/10.38079/igusabder.1199555

Abstract

Amaç: Bu çalışmanın amacı, Yoğunluk Ayarlı Radyoterapi (YART) planlarının hastaya özel kalite kontrolü için kullanılan film, in-vivo elektronik portal görüntüleme cihazları (Electronically Portal Imaging Devices-EPID) ve iki boyutlu (2B) detektörlerin hata tespit yeteneklerini karşılaştırmaktır.
Yöntem: Bu çalışmada, Alderson Rando fantom kullanılmıştır. İlk olarak, Alderson Rando fantomun bilgisayarlı tomografi (BT) görüntüleri üzerine glioblastoma (GBM) ve baş-boyun (HN) kanseri tedavisini temsil eden iki tedavi planı oluşturulmuştur. Bu planlar, orijinal planlar olarak adlandırılmıştır. Daha sonra, bilinçli bir şekilde farklı türde hatalar yaratılarak hatalı planlar elde edilmiştir. Film, in-vivo EPID ve 2B detektörler ile tüm planların hastaya özel kalite kontrolleri yapılmıştır. Elde edilen sonuçlar, gamma analizi yöntemi kullanılarak karşılaştırılmıştır.
Bulgular: Orijinal planlar tüm yöntemlerde gamma analizi testini geçmiştir. HN radyoterapisi için çok yapraklı kolimatör (ÇYK) hatası, in-vivo EPID dozimetrisi ile tespit edilmiştir. Cihaz kalibrasyonu ile ilgili hatalar, tüm yöntemlerde yakalanmıştır. Ancak fraksiyon dozu, gantri ve kolimator açısına bağlı hatalar, kullanılan yöntemlerle tespit edilememiştir.
Sonuç: Hastaya özel kalite kontrol uygulamalarında kullanılan film, 2B dedektörler ve in-vivo EPID dozimetresi arasında hata tespit yetenekleri bakımından belirgin bir fark bulunmamaktadır. Tüm yöntemler, kalibrasyon hatalarını tespit etme konusunda duyarlıdır. ÇYK hatalarının tespiti için in-vivo EPID dozimetrisi ön plana çıkmaktadır. Ancak özellikle gantri ve kolimatöre ait mekanik hatalar, mevcut sistemlerle tespit edilememektedir.

References

  • Huq MS, Fraass BA, Dunscombe PB, et al. The report of task group 100 of the AAPM: Application of risk analysis methods to radiation therapy quality management. Medical Physics. 2016;43(7):4209-4262.
  • Chuang K-C, Giles W, Adamson J. On the use of trajectory log files for machine & patient specific QA. Biomedical Physics & Engineering Express. 2020;7(1):015010.
  • Smith K, Balter P, Duhon J, et al. AAPM Medical Physics Practice Guideline 8. a.: linear accelerator performance tests. Journal of Applied Clinical Medical Physics. 2017;18(4):23-39.
  • Pan Y, Yang R, Zhang S, et al. National survey of patient specific IMRT quality assurance in China. Radiation Oncology. 2019;14(1):1-10.
  • Osman AF, Maalej NM. Applications of machine and deep learning to patient‐specific IMRT/VMAT quality assurance. Journal of Applied Clinical Medical Physics. 2021;22(9):20-36.
  • Rangaraj D, Zhu M, Yang D, et al. Catching errors with patient-specific pretreatment machine log file analysis. Practical Radiation Oncology. 2013;3(2):80-90.
  • Chan GH, Chin LC, Abdellatif A, et al. Survey of patient‐specific quality assurance practice for IMRT and VMAT. Journal of Applied Clinical Medical Physics. 2021;22(7):155-164.
  • Marrazzo L, Zani M, Pallotta S, et al. GafChromic® EBT3 films for patient specific IMRT QA using a multichannel approach. Physica Medica. 2015;31(8):1035-1042.
  • Stathakis S, Myers P, Esquivel C, Mavroidis P, Papanikolaou N. Characterization of a novel 2D array dosimeter for patient‐specific quality assurance with volumetric arc therapy. Medical Physics. 2013;40(7):071731.
  • Olaciregui‐Ruiz I, Vivas‐Maiques B, Kaas J, et al. Transit and non‐transit 3D EPID dosimetry versus detector arrays for patient specific QA. Journal of Applied Clinical Medical Physics. 2019;20(6):79-90.
  • Belanger P, Bercier Y, Parker W, Hristov D. A software system for patient-specific quality control of intensity-modulated radiation treatments by Fricke-gel dosimetry. The Use of Computers in Radiation Therapy: Springer; 2000:394-396.
  • Chuang KC, Giles W, Adamson J. A tool for patient‐specific prediction of delivery discrepancies in machine parameters using trajectory log files. Medical Physics. 2021;48(3):978-990.
  • Son J, Baek T, Lee B, et al. A comparison of the quality assurance of four dosimetric tools for intensity modulated radiation therapy. Radiology and Oncology. 2015;49(3):307-313.
  • Celi S, Costa E, Wessels C, Mazal A, Fourquet A, Francois P. EPID based in vivo dosimetry system: Clinical experience and results. Journal of Applied Clinical Medical Physics. 2016;17(3):262-276.
  • Ford EC, Terezakis S, Souranis A, Harris K, Gay H, Mutic S. Quality control quantification (QCQ): A tool to measure the value of quality control checks in radiation oncology. International Journal of Radiation Oncology* Biology* Physics. 2012;84(3):e263-e269.
  • Kutcher GJ, Coia L, Gillin M, et al. Comprehensive QA for radiation oncology: Report of AAPM radiation therapy committee task group 40. Medical Physics-Lancaster Pa-. 1994;21:581-581.
  • Thoelking J, Fleckenstein J, Sekar Y, et al. Patient-specific online dose verification based on transmission detector measurements. Radiotherapy and Oncology. 2016;119(2):351-356.
  • Liang B, Liu B, Zhou F, Yin FF, Wu Q. Comparisons of volumetric modulated arc therapy (VMAT) quality assurance (QA) systems: Sensitivity analysis to machine errors. Radiation Oncology. 2016;11(1):1-10.
  • Heilemann G, Poppe B, Laub W. On the sensitivity of common gamma‐index evaluation methods to MLC misalignments in rapidarc quality assurance. Medical Physics. 2013;40(3):031702.
  • Hussein M, Rowshanfarzad P, Ebert MA, Nisbet A, Clark CH. A comparison of the gamma index analysis in various commercial IMRT/VMAT QA systems. Radiotherapy and Oncology. 2013;109(3):370-376.
  • Woon W, Ravindran PB, Ekayanake P, Lim YY, Khalid J. A study on the effect of detector resolution on gamma index passing rate for VMAT and IMRT QA. Journal of Applied Clinical Medical Physics. 2018;19(2):230-248.
  • Hossain M. Output trends, characteristics, and measurements of three megavoltage radiotherapy linear accelerators. J Appl Clin Med Phys. 2014;15(4):4783.
  • Vieillevigne L, Molinier J, Brun T, Ferrand R. Gamma index comparison of three VMAT QA systems and evaluation of their sensitivity to delivery errors. Physica Medica. 2015;31(7):720-725.
  • Miften M, Olch A, Mihailidis D, et al. Tolerance limits and methodologies for IMRT measurement-based verification QA: Recommendations of AAPM Task Group No. 218. Medical Physics. 2018;45(4):e53-e83.
  • Xia Y, Adamson J, Zlateva Y, Giles W. Application of TG-218 action limits to SRS and SBRT pre-treatment patient specific QA. J Radiosurg SBRT. 2020;7(2):135-147.
  • Yedekci Y, Biltekin F, Ozyigit G. Feasibility study of an electronic portal imaging based in vivo dose verification system for prostate stereotactic body radiotherapy. Physica Medica. 2019;64:204-209.
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Clinical Sciences
Journal Section Articles
Authors

Fazlı Yağız Yedekçi 0000-0001-9448-8278

Early Pub Date April 29, 2023
Publication Date April 29, 2023
Acceptance Date April 12, 2023
Published in Issue Year 2023 Issue: 19

Cite

JAMA Yedekçi FY. Yoğunluk Ayarlı Radyoterapide Hastaya Özel Kalite Kontrol Uygulamalarında Kullanılan Gereçlerin Hata Tespit Yeteneklerinin Karşılaştırılması. IGUSABDER. 2023;:139–147.

 Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)