Research Article
BibTex RIS Cite

Translasyonel Tıp Açısından İnsan ve Laboratuvar Sıçanı Türlerinde Scapula'nın Karşılaştırılması

Year 2024, Issue: 22, 320 - 333, 30.04.2024
https://doi.org/10.38079/igusabder.1412211

Abstract

Amaç: Çalışmanın amacı, sıçan ve insan skapulası arasındaki anatomik farklılıkları sağlamak ve özellikle ortopedi alanında sıçan modellemesi için hangi suşun en uygun olduğuna dair literatüre kesin bilgiler sunmaktır.
Yöntem: Bu çalışmada, Wistar Albino, Brown Norway, Sprague Dawley ve Lewis sıçan soylarına ait toplam 40 scapula, birbirleriyle ve insan skapulasıyla morfolojik ve morfometrik olarak incelendi. Sıçan scapula’sındaki parametreleri ölçmek için dijital kumpaslar kullanıldı. İnsan scapula’sındaki parametrelerin ölçümleri için literatür araştırmaları yapıldı ve elde edilen literatür verileri değerlendirildi. Gözlemlenen parametrelerin istatistiksel analizi, ortalama değerler, standart sapmalar ve Tek Yönlü Anova Analizi olmak üzere IBM SPSS programı kullanılarak yapıldı. İstatistiksel farklılık olan gruplar arasındaki farklılıkları belirlemek için Tukey post hoc testi kullanıldı. Tüm sıçan ve insan scapula’larının ortalama değerlerine dayanarak her parametre için bir kat oranı hesaplandı.
Bulgular: Tek Yönlü Anova analizine göre; scapula boyu (p<0,001), scapula genişliği, margo cranialis uzunluğu (p<0,001), margo caudalis uzunluğu (p<0,001), spina scapula uzunluğu (p<0,001), acromion uzunluğu (p<0,001), acromion genişliği (p<0,001), coracoacromial mesafe (p<0,001), cavitas glenoidalis ve incisura scapula arasındaki mesafe (p<0,001), angulus cranialis açısı (p=0,001) için belirtiler p değerleri seviyesinde gruplar arasında istatistiksel bir fark vardır. Ancak; collum scapula genişliği, cavitas glenoidalis-1 uzunluğu, cavitas glenoidalis -2 uzunluğu, cavitas glenoidalis genişliği, cavitas glenoidalis dış genişliği, processus hamatus uzunluğu, processus hamatus genişliği, processus coracoideus ve incisura scapula arasındaki mesafe, cavitas glenoidalis ile akromion arasındaki mesafe için gruplar arasında p<0.05 seviyesinde herhangi bir fark yoktur.
Sonuç: Wistar Albino, Brown Norway, Sprague Dawley ve Lewis sıçan soyları, özellikle cavitas glenoidalis’i içeren ortopedik hayvan modelleri için uygundur. Herhangi bir soy fark gözetmeksizin modellemede kullanılabilir. Ancak acromion, spina scapula, ve scapula’nın kenarlarının önem teşkil ettiği modellemelerde mevcut çalışmada belirtilen en uygun soy seçilmelidir.

References

  • 1. Wehling M, ed. Principles of Translational Science in Medicine From Bench to Bedside. United Kingdom: Academic Press Elsevier; 2021.
  • 2. Casmatos D, Chow SC. Translational Medicine: Strategies and Statistical Methods. In: Casmatos D, Chow SC, eds. Translational Medicine: Strategies and Statistical Methods. 1st ed.New York: CRC Press; 2009:1-8.
  • 3. Worboys M, Timmermann C, Toon E. Before translational medicine: Laboratory-clinic relations. HPLS. 2021;43(2):48. doi: 10.1007/s40656-021-00379-6.
  • 4. Heckerman N, Benirshcke K. DeBakey ME, Dodds WJ, Ginzton EL. National Research Council (US) and Institute of Medicine (US) Committee on the Use of Laboratory Animals in Biomedical and Behavioral Research. Use of Laboratory Animals in Biomedical and Behavioral Research. Washington (DC): National Academies Press (US); 1988. doi: 10.17226/1098.
  • 5. Robinson NB, Krieger K, Khan FM, et al. The current state of animal models in research: A review. Int J Surg. 2019;72:9-13. doi: 10.1016/j.ijsu.2019.10.015.
  • 6. Gill TJ, Smith GJ, Wissler RW, Kunz HW. The rat as an experimental animal. Science. 1989;245(4915):269-76. doi: 10.1126/science.2665079.
  • 7. Mukherjee P, Roy S, Ghosh D, Nandi SK. Role of animal models in biomedical research: A review. Lab Anim Res. 2022;38(1):18. doi: 10.1186/s42826-022-00128-1.
  • 8. Domínguez-Oliva A, Hernández-Ávalos I, Martínez-Burnes J, Olmos-Hernández A, Verduzco-Mendoza A, Mota-Rojas D. The importance of animal models in biomedical research: current insights and applications. Animals (Basel). 2023;13(7):1223. doi: 10.3390/ani13071223.
  • 9. Tung WL, Zhao C, Yoshii Y, Su FC, An KN, Amadio PC. Comparative study of carpal tunnel compliance in the human, dog, rabbit, and rat. J Orthop Res. 2010;28(5):652-6. doi: 10.1002/jor.21037.
  • 10. Pandey S, Dvorakova MC. Future perspective of diabetic animal models. Endocr Metab Immune Disord Drug Targets. 2020;20(1):25-38.
  • 11. Nowak RM, Paradiso JL. Walker’s Mammals of the World. 2 Volumes, fourth ed. The Johns Hopkins University Press. Baltimore and London;1983.
  • 12. Maynard RL, Downes N. Anatomy and Histology of the Laboratory Rat in Toxicology and Biomedical Research. London: Elsevier;2019.
  • 13. Pazvant G, Kahvecioğlu KO. Kobaylarda ön ve arka bacak uzun kemiklerinin homotipik varyasyonları üzerine araştırmalar. Vet.Med Istanbul Univ J Fac. 2013;39(1):20-32.
  • 14. von Schroeder HP, Kuiper SD, Botte MJ. Osseous anatomy of the scapula. Clin Orthop Relat Res. 2001;(383):131-9. doi: 10.1097/00003086-200102000-00015.
  • 15. Giurazza F, Del Vescovo R, Schena E, et al. Stature estimation from scapular measurements by CT scan evaluation in an Italian population. Leg Med (Tokyo). 2013;15(4):202-8. doi: 10.1016/j.legalmed.2013.01.002.
  • 16. Singal G, Rathod H, Patel A, Modi P, Prajapati S, Rohitkumar P. A study on measurements and indices of human scapula at Jamnagar Medical College. Int J Res Med. 2013;2(1);65-68.
  • 17. Nasr El-Din WA, Ali MH. A morphometric study of the patterns and variations of the acromion and glenoid cavity of the scapulae in Egyptian population. J Clin Diagn Res. 2015;9(8):AC08-11. doi: 10.7860/JCDR/2015/14362.6386.
  • 18. Oladipo GS, Aigbogun Jr. OE, Akani GL. Angle at the medial border: The spinovertebra angle and its significance. Anat Res Int. 2015;2015:986029. doi: 10.1155/2015/986029.
  • 19. Polguj M, Majos A, Waszczykowski M, et al. A computed tomography study on the correlation between the morphometry of the suprascapular notch and anthropometric measurements of the scapula. Folia Morphol (Warsz). 2016;75(1):87-92. doi: 10.5603/FM.a2015.0072.
  • 20. Shimozono Y, Arai R, Matsuda S. The dimensions of the scapula glenoid in Japanese rotator cuff tear patients. Clin Orthop Surg. 2017;9(2):207-212. doi: 10.4055/cios.2017.9.2.207.
  • 21. Sarı A, Dinçel YM, Günaydın B, Çetin MÜ, Özçaglayan Ö, Bilsel K. Assessment of the glenoid morphology based on demographic data in the Turkish population. Biomed Res Int. 2020;10:2020:5736136. doi: 10.1155/2020/5736136.
  • 22. Sahu D, Joshi M, Rathod V, Nathani P, Valavi AS, Jagiasi JD. Geometric analysis of the humeral head and glenoid in the Indian population and its clinical significance. JSES Int. 2020;4(4):992-1001. doi: 10.1016/j.jseint.2020.06.008.
  • 23. Singh R. Surgical anatomy of the glenoid cavity and its use in shoulder arthroplasty among the North Indian population. Cureus. 2020;12(12):e11940.
  • 24. Guan H, Zhang B, Ye Z, Deng X, Zhang Y. Glenoid bony morphology along long diameter is associated with the occurrence of recurrent anterior shoulder dislocation: A case-control study based on three-dimensional CT measurements. Int Orthop. 2022;46(8):1811-1819. doi: 10.1007/s00264-022-05463-5.
  • 25. Arenas-Miquelez A, Karargyris O, Graham PL, Hertel R. High correlation between inner and outer glenoid circle diameters and its clinical relevance. Knee Surg Sports Traumatol Arthrosc. 2023;31(1):199-205. doi: 10.1007/s00167-022-07050-y.
  • 26. Chen Y, Xiong J, Chen W, et al. Morphological classification and measurement of the glenoid cavity using three-dimensional reconstruction in a Chinese population. Folia Morphol (Warsz). 2023;82(2):325-331. doi: 10.5603/FM.a2022.0017.
  • 27. Akın Saygın D, Türkoğlu FN, Aydın Kabakci AD, Alpa S, Yilmaz MT. A morphometric and morphological analysis of superior border of dry scapulae. Med Records. 2023;5(1):115-25.
  • 28. Akhtar MJ, Kumar S, Chandan CB, et al. Morphometry and morphology of the acromion process and its implications in subacromial impingement syndrome. Cureus. 2023;15(8):e44329. doi: 10.7759/cureus.44329.
  • 29. Senol GT, Kurtul I, Ahmetoglu G, Ray A. Clinical significance of the morphometric structures of the scapula with the emphasis on the glenoid cavity. Med Records. 2023;5(2):304-8.
  • 30. Arifoğlu Y. Her Yönüyle Anatomi. 3. Baskı. İstanbul: İstanbul Tıp Kitap Evi; 2021:39.
  • 31. White TD, Black MT, Folkens PA. Human Osteology. Third Edition. California; Elsevier Academic Press; 2012:166-174.
  • 32. Rempel DM, Diao E. Entrapment neuropathies: pathophysiology and pathogenesis. J Electromyogr Kinesiol. 2004;14(1):71-5. doi: 10.1016/j.jelekin.2003.09.009.
  • 33. Roll SC, Evans KD, Volz KR, Sommerich CM. Longitudinal design for sonographic measurement of median nerve swelling with controlled exposure to physical work using an animal model. Ultrasound Med Biol. 2013;39(12):2492-7.
  • 34. Andersen ML, Winter LMF. Animal models in biological and biomedical research - experimental and ethical concerns. An Acad Bras Cienc. 2019;91(suppl 1):e20170238. doi: 10.1590/0001-3765201720170238.
  • 35. Zhou Y, Van Niekerk M, Hirner M. Reverse shoulder arthroplasty with metallic augments to preserve bone and restore joint line in patients with glenoid bone loss. Seminars in Arthroplasty. 2022;32:824-833.
  • 36. Rosales-Rosales L, Rosales-Varo AP, García-Espona MA, Roda-Murillo O, Montesinos I, Hernandez-Cortés P. Anthropometrical study of the human glenoid in a normal Spanish population. Rev Esp Cir Ortop Traumatol (Engl Ed). 2019;63(5):327-335. doi: 10.1016/j.recot.2019.04.005.
  • 37. Sagnam MR, Devi SSS, Krupadanam K, Anasuya K. A study on the morphology of the suprascapular notch and ıts distance from the glenoid cavity. Journal of Clinical and Diagnostic Research. 2013;7(2):189-192.

Comparison of the Scapula in Human and Laboratory Rat Species from the Perspective of Translational Medicine

Year 2024, Issue: 22, 320 - 333, 30.04.2024
https://doi.org/10.38079/igusabder.1412211

Abstract

Aim: The aim of the study is to provide anatomical differences between rat and human scapula and definitive information to the literature about which strain is most appropriate for rat modeling, particularly in orthopedics.
Methods: In current study, a total of 40 scapulas belonging to Wistar Albino, Brown Norway, Sprague Dawley and Lewis strains were examined morphologically and morphometrically with each other and with the human scapula. Digital calipers were used to measure parameters for rat scapula. Literature searches were conducted for the measurements of the human scapula, and the obtained literature data was evaluated. A statistical analysis of the observed parameters was conducted using mean values, standard deviations, and One Way Anova Analysis in the IBM SPSS program. The Tukey post hoc test was used to determine the differences between groups that have a statistical difference. A fold ratio was calculated for each parameter based on the average values of all rat and human scapulae.
Results: According to One-Way Anova analysis, there is not any difference between groups for; width of collum scapula, length of cavitas glenoidalis-1, length of cavitas glenoidalis -2, width of cavitas glenoidalis, external width of cavitas glenoidalis, length of processus hamatus, width of processus hamatus, distance between processus coracoideus and incisura scapula, distance between cavitas glenoidalis to acromion at p<0.05 level. There is a statistical difference groups for; length of scapula (p<0.001), width of scapula (p<0.001), length of margo cranialis (p=0.001), length of margo caudalis (p<0.001), length of spina scapula (p<0.001), length of acromion (p=0.007), width of acromion (p=0.001), coracoacromial distance (p=0.003), distance between cavitas glenoidalis and incisura scapula (p<0.001), angle of angulus cranialis (p=0.001) levels.
Conclusions: Wistar Albino, Brown Norway, Sprague Dawley and Lewis rat strains are suitable for orthopedical animal models for especially models including cavitas glenoidalis. Any strain can be used in modeling indiscriminately. However, in modeling where the acromion, spina scapula, and edges of the scapula are important, the most appropriate strain specified in the current study should be selected.

References

  • 1. Wehling M, ed. Principles of Translational Science in Medicine From Bench to Bedside. United Kingdom: Academic Press Elsevier; 2021.
  • 2. Casmatos D, Chow SC. Translational Medicine: Strategies and Statistical Methods. In: Casmatos D, Chow SC, eds. Translational Medicine: Strategies and Statistical Methods. 1st ed.New York: CRC Press; 2009:1-8.
  • 3. Worboys M, Timmermann C, Toon E. Before translational medicine: Laboratory-clinic relations. HPLS. 2021;43(2):48. doi: 10.1007/s40656-021-00379-6.
  • 4. Heckerman N, Benirshcke K. DeBakey ME, Dodds WJ, Ginzton EL. National Research Council (US) and Institute of Medicine (US) Committee on the Use of Laboratory Animals in Biomedical and Behavioral Research. Use of Laboratory Animals in Biomedical and Behavioral Research. Washington (DC): National Academies Press (US); 1988. doi: 10.17226/1098.
  • 5. Robinson NB, Krieger K, Khan FM, et al. The current state of animal models in research: A review. Int J Surg. 2019;72:9-13. doi: 10.1016/j.ijsu.2019.10.015.
  • 6. Gill TJ, Smith GJ, Wissler RW, Kunz HW. The rat as an experimental animal. Science. 1989;245(4915):269-76. doi: 10.1126/science.2665079.
  • 7. Mukherjee P, Roy S, Ghosh D, Nandi SK. Role of animal models in biomedical research: A review. Lab Anim Res. 2022;38(1):18. doi: 10.1186/s42826-022-00128-1.
  • 8. Domínguez-Oliva A, Hernández-Ávalos I, Martínez-Burnes J, Olmos-Hernández A, Verduzco-Mendoza A, Mota-Rojas D. The importance of animal models in biomedical research: current insights and applications. Animals (Basel). 2023;13(7):1223. doi: 10.3390/ani13071223.
  • 9. Tung WL, Zhao C, Yoshii Y, Su FC, An KN, Amadio PC. Comparative study of carpal tunnel compliance in the human, dog, rabbit, and rat. J Orthop Res. 2010;28(5):652-6. doi: 10.1002/jor.21037.
  • 10. Pandey S, Dvorakova MC. Future perspective of diabetic animal models. Endocr Metab Immune Disord Drug Targets. 2020;20(1):25-38.
  • 11. Nowak RM, Paradiso JL. Walker’s Mammals of the World. 2 Volumes, fourth ed. The Johns Hopkins University Press. Baltimore and London;1983.
  • 12. Maynard RL, Downes N. Anatomy and Histology of the Laboratory Rat in Toxicology and Biomedical Research. London: Elsevier;2019.
  • 13. Pazvant G, Kahvecioğlu KO. Kobaylarda ön ve arka bacak uzun kemiklerinin homotipik varyasyonları üzerine araştırmalar. Vet.Med Istanbul Univ J Fac. 2013;39(1):20-32.
  • 14. von Schroeder HP, Kuiper SD, Botte MJ. Osseous anatomy of the scapula. Clin Orthop Relat Res. 2001;(383):131-9. doi: 10.1097/00003086-200102000-00015.
  • 15. Giurazza F, Del Vescovo R, Schena E, et al. Stature estimation from scapular measurements by CT scan evaluation in an Italian population. Leg Med (Tokyo). 2013;15(4):202-8. doi: 10.1016/j.legalmed.2013.01.002.
  • 16. Singal G, Rathod H, Patel A, Modi P, Prajapati S, Rohitkumar P. A study on measurements and indices of human scapula at Jamnagar Medical College. Int J Res Med. 2013;2(1);65-68.
  • 17. Nasr El-Din WA, Ali MH. A morphometric study of the patterns and variations of the acromion and glenoid cavity of the scapulae in Egyptian population. J Clin Diagn Res. 2015;9(8):AC08-11. doi: 10.7860/JCDR/2015/14362.6386.
  • 18. Oladipo GS, Aigbogun Jr. OE, Akani GL. Angle at the medial border: The spinovertebra angle and its significance. Anat Res Int. 2015;2015:986029. doi: 10.1155/2015/986029.
  • 19. Polguj M, Majos A, Waszczykowski M, et al. A computed tomography study on the correlation between the morphometry of the suprascapular notch and anthropometric measurements of the scapula. Folia Morphol (Warsz). 2016;75(1):87-92. doi: 10.5603/FM.a2015.0072.
  • 20. Shimozono Y, Arai R, Matsuda S. The dimensions of the scapula glenoid in Japanese rotator cuff tear patients. Clin Orthop Surg. 2017;9(2):207-212. doi: 10.4055/cios.2017.9.2.207.
  • 21. Sarı A, Dinçel YM, Günaydın B, Çetin MÜ, Özçaglayan Ö, Bilsel K. Assessment of the glenoid morphology based on demographic data in the Turkish population. Biomed Res Int. 2020;10:2020:5736136. doi: 10.1155/2020/5736136.
  • 22. Sahu D, Joshi M, Rathod V, Nathani P, Valavi AS, Jagiasi JD. Geometric analysis of the humeral head and glenoid in the Indian population and its clinical significance. JSES Int. 2020;4(4):992-1001. doi: 10.1016/j.jseint.2020.06.008.
  • 23. Singh R. Surgical anatomy of the glenoid cavity and its use in shoulder arthroplasty among the North Indian population. Cureus. 2020;12(12):e11940.
  • 24. Guan H, Zhang B, Ye Z, Deng X, Zhang Y. Glenoid bony morphology along long diameter is associated with the occurrence of recurrent anterior shoulder dislocation: A case-control study based on three-dimensional CT measurements. Int Orthop. 2022;46(8):1811-1819. doi: 10.1007/s00264-022-05463-5.
  • 25. Arenas-Miquelez A, Karargyris O, Graham PL, Hertel R. High correlation between inner and outer glenoid circle diameters and its clinical relevance. Knee Surg Sports Traumatol Arthrosc. 2023;31(1):199-205. doi: 10.1007/s00167-022-07050-y.
  • 26. Chen Y, Xiong J, Chen W, et al. Morphological classification and measurement of the glenoid cavity using three-dimensional reconstruction in a Chinese population. Folia Morphol (Warsz). 2023;82(2):325-331. doi: 10.5603/FM.a2022.0017.
  • 27. Akın Saygın D, Türkoğlu FN, Aydın Kabakci AD, Alpa S, Yilmaz MT. A morphometric and morphological analysis of superior border of dry scapulae. Med Records. 2023;5(1):115-25.
  • 28. Akhtar MJ, Kumar S, Chandan CB, et al. Morphometry and morphology of the acromion process and its implications in subacromial impingement syndrome. Cureus. 2023;15(8):e44329. doi: 10.7759/cureus.44329.
  • 29. Senol GT, Kurtul I, Ahmetoglu G, Ray A. Clinical significance of the morphometric structures of the scapula with the emphasis on the glenoid cavity. Med Records. 2023;5(2):304-8.
  • 30. Arifoğlu Y. Her Yönüyle Anatomi. 3. Baskı. İstanbul: İstanbul Tıp Kitap Evi; 2021:39.
  • 31. White TD, Black MT, Folkens PA. Human Osteology. Third Edition. California; Elsevier Academic Press; 2012:166-174.
  • 32. Rempel DM, Diao E. Entrapment neuropathies: pathophysiology and pathogenesis. J Electromyogr Kinesiol. 2004;14(1):71-5. doi: 10.1016/j.jelekin.2003.09.009.
  • 33. Roll SC, Evans KD, Volz KR, Sommerich CM. Longitudinal design for sonographic measurement of median nerve swelling with controlled exposure to physical work using an animal model. Ultrasound Med Biol. 2013;39(12):2492-7.
  • 34. Andersen ML, Winter LMF. Animal models in biological and biomedical research - experimental and ethical concerns. An Acad Bras Cienc. 2019;91(suppl 1):e20170238. doi: 10.1590/0001-3765201720170238.
  • 35. Zhou Y, Van Niekerk M, Hirner M. Reverse shoulder arthroplasty with metallic augments to preserve bone and restore joint line in patients with glenoid bone loss. Seminars in Arthroplasty. 2022;32:824-833.
  • 36. Rosales-Rosales L, Rosales-Varo AP, García-Espona MA, Roda-Murillo O, Montesinos I, Hernandez-Cortés P. Anthropometrical study of the human glenoid in a normal Spanish population. Rev Esp Cir Ortop Traumatol (Engl Ed). 2019;63(5):327-335. doi: 10.1016/j.recot.2019.04.005.
  • 37. Sagnam MR, Devi SSS, Krupadanam K, Anasuya K. A study on the morphology of the suprascapular notch and ıts distance from the glenoid cavity. Journal of Clinical and Diagnostic Research. 2013;7(2):189-192.
There are 37 citations in total.

Details

Primary Language English
Subjects Zoology (Other)
Journal Section Articles
Authors

Yasemin Üstündağ 0000-0002-8836-0371

Osman Yılmaz 0000-0001-7817-7576

Mehmet Kartal 0000-0001-7364-0875

Early Pub Date April 27, 2024
Publication Date April 30, 2024
Submission Date December 30, 2023
Acceptance Date March 27, 2024
Published in Issue Year 2024 Issue: 22

Cite

JAMA Üstündağ Y, Yılmaz O, Kartal M. Comparison of the Scapula in Human and Laboratory Rat Species from the Perspective of Translational Medicine. IGUSABDER. 2024;:320–333.

 Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)