Research Article
BibTex RIS Cite

MANYETİK POZİSYON SENSÖRÜNE SAHİP SCARA ROBOTUNUN MODELLENMESİ VE SENSÖRÜN ANALİZİ

Year 2023, , 353 - 361, 31.12.2023
https://doi.org/10.46519/ij3dptdi.1308447

Abstract

Bu çalışmanın temel amacı, manyetik pozisyon sensörlü bir enkoderin oluşturulması ve bunun 3 eksenli bir SCARA robotuna entegre edilmesidir. Geliştirilen pozisyon enkoderi, 12-bit çözünürlüğe sahiptir. Enkoder; motor adım çözünürlüğü, sensör-enkoder mesafesi, sürücü sıcaklığı ve yazılım değişken tipleri gibi farklı sistem parametreleri altında deneysel yollarla analiz edilmiştir. Enkoder, motor mili üzerine yerleştirilen mıknatısları algılayarak konum bilgisini elde etmektedir. Elde edilen veriler, farklı motor hızlarında ve çözünürlüklerde analiz edilerek doğruluğu değerlendirilmektedir. Çalışma kapsamında, step motor performansı üzerinde sürücü sıcaklığının etkisi incelenmiştir. Ardından, motor mili üzerine yerleştirilen mıknatıs ve sensör arasındaki mesafe değişiminin konum hataları üzerindeki etkisi değerlendirilmiştir. Ayrıca, yazılım algoritmasının doğruluğu da test edilerek algoritmadan kaynaklanabilecek olası sorunlar incelenmiştir. Yapılan deneyler, manyetik konum sensörlerinin hassas konumlandırma için robotik uygulamalarda potansiyel olarak kullanılabileceğini göstermiştir. Ancak, elde edilen sonuçlar, bu enkoderlerin dış etkenlerden etkilenebileceğini ortaya koymuştur. Bu nedenle, sistem tasarımı aşamasında enkoder parametrelerinin, konumu ve hassasiyeti gibi faktörlerin dikkate alınması gerektiği sonucuna varılmıştır.

References

  • 1. Chang, Y.-H., Liang, C.-H., & Lan, C.-C., “An end-effector wrist module for the kinematically redundant”, Mechanism and Machine Theory, Vol. 156, Issue 104064, Pages 1-3, 2021.
  • 2. Asada, H., Hosoda, K., & Hanafusa, H. “Robot Analysis: The Mechanics of Serial and Parallel Manipulators”, Wiley, New York, 1986.
  • 3. Nakamura, Y., Hanafusa, H., Inoue, H., & Asada, H., “Handbook of Robotics”, Pages 869-891, Springer, Berlin, 2007.
  • 4. Lee, K. M., Choi, J., & Bang, Y. B., Shaft position measurement using dual absolute encoders. Sensors and Actuators A: Physical, Vol. 238, Pages 276-281, 2016.
  • 5. Hao, S., Liu, Y., & Hao, M., “Study on a novel absolute magnetic encoder”, IEEE International Conference on Robotics and Biomimetics, Pages 1773-1776, IEEE, 2009.
  • 6. Yonnet, J., Foggia, A., & Adenot, S., “A differential magnetic position sensor”, Sensors and Actuators, Vol. 81, Issues 1-3, Pages 340-342, 2000.
  • 7. Movahedi, H., Zemouche, A., & Rajamani, R., “Magnetic position estimation using optimal sensor placement and nonlinear observer for smart actuators”, Control Engineering Practice, Vol. 112, Issue 104817, 2021.
  • 8. Zubiri Carrizosa, A., “Fabrication and modelling of a robot arm”, Master's thesis, Universitat Politècnica de Catalunya, Barcelona, 2020.
  • 9. Yang, B., & Yang, W. Modular approach to kinematic reliability analysis of industrial robots. Reliability Engineering & System Safety, Vol. 229, Issue 108841, 2023.
  • 10. Ghasemi, M. H., Korayem, A. H., Nekoo, S. R., & Korayem, M. H., “Improvement of position measurement for 6R robot using magnetic encoder AS5045”, Journal of Computational & Applied Research in Mechanical Engineering (JCARME), Vol. 6, Issue 1, Pages 11-20, 2016.
  • 11. Ni, F., Jin, M., Wang, H., Liu, H., & Hirzinger, G. Joint Fault-Tolerant Design of the Chinese Space Robotic Arm. IEEE International Conference on Information Acquisition, August 20-23, Veihai, Pages 528-533, 2006.
  • 12. Tomaszuk, P., Łukowska, A., Rećko, M., & Dzicrzck, K., Integrated drive system of robotic arm joint used in a mobile robot. 23rd International Conference on Methods & Models in Automation & Robotics, August 27-30, Miedzyzdroje, Pages 509-514, 2018.

MODELING OF SCARA ROBOT WITH MAGNETIC POSITION SENSOR AND ANALYSIS OF THE SENSOR

Year 2023, , 353 - 361, 31.12.2023
https://doi.org/10.46519/ij3dptdi.1308447

Abstract

The main aim of this study is to create an encoder equiped with magnetic position sensor and integrate it into a 3-axis SCARA robot. The developed position encoder has a resolution of 12 bits. The encoder has been analyzed experimentally under different system parameters such as motor step resolution, sensor-encoder distance, driver temperature, and software variable types. The encoder obtains position information by detecting magnets placed on the motor shaft. The accuracy of the obtained data is analyzed at different motor speeds and resolutions. Within the scope of this study, the effect of driver temperature on the performance of the stepper motor has been investigated. Subsequently, the position error impact of changes in the distance between the sensor and the magnet placed on the motor shaft has been evaluated. Additionally, the accuracy of the software algorithm has been tested, and possible issues arising from the algorithm have been examined. The conducted experiments have shown that magnetic position sensors have the potential to be used for precise positioning in robotic applications. However, the obtained results have revealed that these encoders can be affected by external factors. Therefore, it has been concluded that encoder parameters, such as position and accuracy, should be taken into consideration during the system design phase.

References

  • 1. Chang, Y.-H., Liang, C.-H., & Lan, C.-C., “An end-effector wrist module for the kinematically redundant”, Mechanism and Machine Theory, Vol. 156, Issue 104064, Pages 1-3, 2021.
  • 2. Asada, H., Hosoda, K., & Hanafusa, H. “Robot Analysis: The Mechanics of Serial and Parallel Manipulators”, Wiley, New York, 1986.
  • 3. Nakamura, Y., Hanafusa, H., Inoue, H., & Asada, H., “Handbook of Robotics”, Pages 869-891, Springer, Berlin, 2007.
  • 4. Lee, K. M., Choi, J., & Bang, Y. B., Shaft position measurement using dual absolute encoders. Sensors and Actuators A: Physical, Vol. 238, Pages 276-281, 2016.
  • 5. Hao, S., Liu, Y., & Hao, M., “Study on a novel absolute magnetic encoder”, IEEE International Conference on Robotics and Biomimetics, Pages 1773-1776, IEEE, 2009.
  • 6. Yonnet, J., Foggia, A., & Adenot, S., “A differential magnetic position sensor”, Sensors and Actuators, Vol. 81, Issues 1-3, Pages 340-342, 2000.
  • 7. Movahedi, H., Zemouche, A., & Rajamani, R., “Magnetic position estimation using optimal sensor placement and nonlinear observer for smart actuators”, Control Engineering Practice, Vol. 112, Issue 104817, 2021.
  • 8. Zubiri Carrizosa, A., “Fabrication and modelling of a robot arm”, Master's thesis, Universitat Politècnica de Catalunya, Barcelona, 2020.
  • 9. Yang, B., & Yang, W. Modular approach to kinematic reliability analysis of industrial robots. Reliability Engineering & System Safety, Vol. 229, Issue 108841, 2023.
  • 10. Ghasemi, M. H., Korayem, A. H., Nekoo, S. R., & Korayem, M. H., “Improvement of position measurement for 6R robot using magnetic encoder AS5045”, Journal of Computational & Applied Research in Mechanical Engineering (JCARME), Vol. 6, Issue 1, Pages 11-20, 2016.
  • 11. Ni, F., Jin, M., Wang, H., Liu, H., & Hirzinger, G. Joint Fault-Tolerant Design of the Chinese Space Robotic Arm. IEEE International Conference on Information Acquisition, August 20-23, Veihai, Pages 528-533, 2006.
  • 12. Tomaszuk, P., Łukowska, A., Rećko, M., & Dzicrzck, K., Integrated drive system of robotic arm joint used in a mobile robot. 23rd International Conference on Methods & Models in Automation & Robotics, August 27-30, Miedzyzdroje, Pages 509-514, 2018.
There are 12 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Selim Beriş 0000-0003-0944-7485

Kubilay Taşdelen 0000-0001-5664-3898

Early Pub Date December 25, 2023
Publication Date December 31, 2023
Submission Date June 1, 2023
Published in Issue Year 2023

Cite

APA Beriş, S., & Taşdelen, K. (2023). MANYETİK POZİSYON SENSÖRÜNE SAHİP SCARA ROBOTUNUN MODELLENMESİ VE SENSÖRÜN ANALİZİ. International Journal of 3D Printing Technologies and Digital Industry, 7(3), 353-361. https://doi.org/10.46519/ij3dptdi.1308447
AMA Beriş S, Taşdelen K. MANYETİK POZİSYON SENSÖRÜNE SAHİP SCARA ROBOTUNUN MODELLENMESİ VE SENSÖRÜN ANALİZİ. IJ3DPTDI. December 2023;7(3):353-361. doi:10.46519/ij3dptdi.1308447
Chicago Beriş, Selim, and Kubilay Taşdelen. “MANYETİK POZİSYON SENSÖRÜNE SAHİP SCARA ROBOTUNUN MODELLENMESİ VE SENSÖRÜN ANALİZİ”. International Journal of 3D Printing Technologies and Digital Industry 7, no. 3 (December 2023): 353-61. https://doi.org/10.46519/ij3dptdi.1308447.
EndNote Beriş S, Taşdelen K (December 1, 2023) MANYETİK POZİSYON SENSÖRÜNE SAHİP SCARA ROBOTUNUN MODELLENMESİ VE SENSÖRÜN ANALİZİ. International Journal of 3D Printing Technologies and Digital Industry 7 3 353–361.
IEEE S. Beriş and K. Taşdelen, “MANYETİK POZİSYON SENSÖRÜNE SAHİP SCARA ROBOTUNUN MODELLENMESİ VE SENSÖRÜN ANALİZİ”, IJ3DPTDI, vol. 7, no. 3, pp. 353–361, 2023, doi: 10.46519/ij3dptdi.1308447.
ISNAD Beriş, Selim - Taşdelen, Kubilay. “MANYETİK POZİSYON SENSÖRÜNE SAHİP SCARA ROBOTUNUN MODELLENMESİ VE SENSÖRÜN ANALİZİ”. International Journal of 3D Printing Technologies and Digital Industry 7/3 (December 2023), 353-361. https://doi.org/10.46519/ij3dptdi.1308447.
JAMA Beriş S, Taşdelen K. MANYETİK POZİSYON SENSÖRÜNE SAHİP SCARA ROBOTUNUN MODELLENMESİ VE SENSÖRÜN ANALİZİ. IJ3DPTDI. 2023;7:353–361.
MLA Beriş, Selim and Kubilay Taşdelen. “MANYETİK POZİSYON SENSÖRÜNE SAHİP SCARA ROBOTUNUN MODELLENMESİ VE SENSÖRÜN ANALİZİ”. International Journal of 3D Printing Technologies and Digital Industry, vol. 7, no. 3, 2023, pp. 353-61, doi:10.46519/ij3dptdi.1308447.
Vancouver Beriş S, Taşdelen K. MANYETİK POZİSYON SENSÖRÜNE SAHİP SCARA ROBOTUNUN MODELLENMESİ VE SENSÖRÜN ANALİZİ. IJ3DPTDI. 2023;7(3):353-61.

 download

Uluslararası 3B Yazıcı Teknolojileri ve Dijital Endüstri Dergisi Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.