Research Article
BibTex RIS Cite
Year 2023, Volume: 7 Issue: 1, 124 - 128, 29.04.2023
https://doi.org/10.46519/ij3dptdi.1213659

Abstract

References

  • 1. Dip, T. M.; Emu. A. S.; Nafiz, M. N. H.; Kundu, P.; Rakhi, H. R.; Sayam, A.; Akhtarujjman, Md.; Shoaib, M.; Ahmed, M. S.; Ushno, S. T. et al.., “3D printing technology for textiles and fashion.” Textile Progress, Vol. 52, Issue 4, Pages 167-260, 2020
  • 2. Royan, N. R., Leong, J. S., Chan, W. N., Tan, J. R., & Shamsuddin, Z. S. B. “Current state and challenges of natural fibre-reinforced polymer composites as feeder in fdm-based 3D printing.” Polymers, Vol. 13, Issue 14, 2289, 2021.
  • 3. Deb, D., Jafferson, J.M., “Natural fibers reinforced FDM 3D printing filaments.” Materials Today:Proceedings. Vol. 46, Issue 2, Pages 1308-1318, 2021.
  • 4. Kariz, M., Sernek, M., Obucina, M., Kuzman, M.K., “Effect of wood content in FDM filament on properties of 3D printed parts.” Materials Today:Communications. Vol. 14, Pages 135-140, 2018.
  • 5. Petchwatta, N., Channuan, W., Naknaen, P., Narupai, B., “3D Printing Filaments Prepared from Modified Poly(Lactic Acid)/ Teak Wood Flour Composites: An Investigation on the Particle Size Effects and Silane Coupling Agent Compatibilisation.” Journal of Physical Science. Vol.30, Issue 2, Pages 169-188, 2019.
  • 6. Filgueira, D., Holmen, S., Melboss, J.K., Moldes, D., Echtermeyer, A.T., Chinga-Carrasco, G., “Enzymatic-Assisted Modification of Thermomechanical Pulp Fibers To Improve the Interfacial Adhesion with Poly(lactic acid) for 3D Printing.” ACS Sustainable Chem. Eng., Vol. 5, Issue 10, Pages 9338-9346, 2017.
  • 7. Le Duigou, A., Barbe, A., Guillou, E., Castro, M., “3D printing of continuous flax fibre reinforced biocomposites for structural applications.” Materials & Design, Vol. 180, 107884. 2019.
  • 8. Gama, N., Magina, S., Ferreira, A., Barros-Timmons, A., “Chemically modified bamboo fiber/ABS composites for high-quality additive manufacturing.” Polymer Journal. Vol. 53, Pages 1459-1467., 2021.
  • 9. Long, Y., Zhang, Z., Fu, K., Li, Y., “Efficient plant fibre yarn pre-treatment for 3D printed continuous flax fibre/poly(lactic) acid composites.” Composites Part B:Engineering. Vol. 227, 109389, 2021.
  • 10. Lacerda, P.S.S., Gama, N., Freire, C.S.R., Silvestre, A.J.D., Barros-Timmons, A., “Grafting Poly(Methyl Methacrylate) (PMMA) from Cork via Atom Transfer Radical Polymerization (ATRP) towards Higher Quality of Three-Dimensional (3D) Printed PMMA/Cork-g-PMMA” Materials. Vol. 12, Issue 9, 1867, 2020.

PRODUCTION OF WASTE JUTE DOPED PLA (POLYLACTIC ACID) FILAMENT FOR FFF: EFFECT OF PULVERIZATION

Year 2023, Volume: 7 Issue: 1, 124 - 128, 29.04.2023
https://doi.org/10.46519/ij3dptdi.1213659

Abstract

In recent years, there has been an outbreak of research on natural fiber-reinforced materials to reduce non-recycled material effects and produce environmentally friendly products. In parallel with the increasing popularity of additive manufacturing, the development of new natural fiber-reinforced materials in this field has also increased to improve pure material characteristics and reduce raw materials usage. This study presents the manufacturing process of %5 waste jute-reinforced PLA filaments and the characteristics of 3D printed parts. For the production of jute-reinforced filaments, polylactic acid (PLA) granules were pulverized to increase the material surface for better bonding between materials in the composite matrix structure. The effectiveness of pulverizing PLA granules was exposed by comparing it with the production of the same composite matrix with PLA granules. Both matrices were formed into filaments to produce 3D parts in Fused Filament Fabrication technology. Thermo-gravimetric analysis (TGA) and differential scanning calorimetry (DSC) will be presented in filament form. Besides, the mechanical properties of 3D parts will also be presented. Within the scope of the study, it is aimed to reveal the material size effect for producing natural fiber-reinforced filaments for additive manufacturing.

References

  • 1. Dip, T. M.; Emu. A. S.; Nafiz, M. N. H.; Kundu, P.; Rakhi, H. R.; Sayam, A.; Akhtarujjman, Md.; Shoaib, M.; Ahmed, M. S.; Ushno, S. T. et al.., “3D printing technology for textiles and fashion.” Textile Progress, Vol. 52, Issue 4, Pages 167-260, 2020
  • 2. Royan, N. R., Leong, J. S., Chan, W. N., Tan, J. R., & Shamsuddin, Z. S. B. “Current state and challenges of natural fibre-reinforced polymer composites as feeder in fdm-based 3D printing.” Polymers, Vol. 13, Issue 14, 2289, 2021.
  • 3. Deb, D., Jafferson, J.M., “Natural fibers reinforced FDM 3D printing filaments.” Materials Today:Proceedings. Vol. 46, Issue 2, Pages 1308-1318, 2021.
  • 4. Kariz, M., Sernek, M., Obucina, M., Kuzman, M.K., “Effect of wood content in FDM filament on properties of 3D printed parts.” Materials Today:Communications. Vol. 14, Pages 135-140, 2018.
  • 5. Petchwatta, N., Channuan, W., Naknaen, P., Narupai, B., “3D Printing Filaments Prepared from Modified Poly(Lactic Acid)/ Teak Wood Flour Composites: An Investigation on the Particle Size Effects and Silane Coupling Agent Compatibilisation.” Journal of Physical Science. Vol.30, Issue 2, Pages 169-188, 2019.
  • 6. Filgueira, D., Holmen, S., Melboss, J.K., Moldes, D., Echtermeyer, A.T., Chinga-Carrasco, G., “Enzymatic-Assisted Modification of Thermomechanical Pulp Fibers To Improve the Interfacial Adhesion with Poly(lactic acid) for 3D Printing.” ACS Sustainable Chem. Eng., Vol. 5, Issue 10, Pages 9338-9346, 2017.
  • 7. Le Duigou, A., Barbe, A., Guillou, E., Castro, M., “3D printing of continuous flax fibre reinforced biocomposites for structural applications.” Materials & Design, Vol. 180, 107884. 2019.
  • 8. Gama, N., Magina, S., Ferreira, A., Barros-Timmons, A., “Chemically modified bamboo fiber/ABS composites for high-quality additive manufacturing.” Polymer Journal. Vol. 53, Pages 1459-1467., 2021.
  • 9. Long, Y., Zhang, Z., Fu, K., Li, Y., “Efficient plant fibre yarn pre-treatment for 3D printed continuous flax fibre/poly(lactic) acid composites.” Composites Part B:Engineering. Vol. 227, 109389, 2021.
  • 10. Lacerda, P.S.S., Gama, N., Freire, C.S.R., Silvestre, A.J.D., Barros-Timmons, A., “Grafting Poly(Methyl Methacrylate) (PMMA) from Cork via Atom Transfer Radical Polymerization (ATRP) towards Higher Quality of Three-Dimensional (3D) Printed PMMA/Cork-g-PMMA” Materials. Vol. 12, Issue 9, 1867, 2020.
Year 2023, Volume: 7 Issue: 1, 124 - 128, 29.04.2023
https://doi.org/10.46519/ij3dptdi.1213659

Abstract

References

  • 1. Dip, T. M.; Emu. A. S.; Nafiz, M. N. H.; Kundu, P.; Rakhi, H. R.; Sayam, A.; Akhtarujjman, Md.; Shoaib, M.; Ahmed, M. S.; Ushno, S. T. et al.., “3D printing technology for textiles and fashion.” Textile Progress, Vol. 52, Issue 4, Pages 167-260, 2020
  • 2. Royan, N. R., Leong, J. S., Chan, W. N., Tan, J. R., & Shamsuddin, Z. S. B. “Current state and challenges of natural fibre-reinforced polymer composites as feeder in fdm-based 3D printing.” Polymers, Vol. 13, Issue 14, 2289, 2021.
  • 3. Deb, D., Jafferson, J.M., “Natural fibers reinforced FDM 3D printing filaments.” Materials Today:Proceedings. Vol. 46, Issue 2, Pages 1308-1318, 2021.
  • 4. Kariz, M., Sernek, M., Obucina, M., Kuzman, M.K., “Effect of wood content in FDM filament on properties of 3D printed parts.” Materials Today:Communications. Vol. 14, Pages 135-140, 2018.
  • 5. Petchwatta, N., Channuan, W., Naknaen, P., Narupai, B., “3D Printing Filaments Prepared from Modified Poly(Lactic Acid)/ Teak Wood Flour Composites: An Investigation on the Particle Size Effects and Silane Coupling Agent Compatibilisation.” Journal of Physical Science. Vol.30, Issue 2, Pages 169-188, 2019.
  • 6. Filgueira, D., Holmen, S., Melboss, J.K., Moldes, D., Echtermeyer, A.T., Chinga-Carrasco, G., “Enzymatic-Assisted Modification of Thermomechanical Pulp Fibers To Improve the Interfacial Adhesion with Poly(lactic acid) for 3D Printing.” ACS Sustainable Chem. Eng., Vol. 5, Issue 10, Pages 9338-9346, 2017.
  • 7. Le Duigou, A., Barbe, A., Guillou, E., Castro, M., “3D printing of continuous flax fibre reinforced biocomposites for structural applications.” Materials & Design, Vol. 180, 107884. 2019.
  • 8. Gama, N., Magina, S., Ferreira, A., Barros-Timmons, A., “Chemically modified bamboo fiber/ABS composites for high-quality additive manufacturing.” Polymer Journal. Vol. 53, Pages 1459-1467., 2021.
  • 9. Long, Y., Zhang, Z., Fu, K., Li, Y., “Efficient plant fibre yarn pre-treatment for 3D printed continuous flax fibre/poly(lactic) acid composites.” Composites Part B:Engineering. Vol. 227, 109389, 2021.
  • 10. Lacerda, P.S.S., Gama, N., Freire, C.S.R., Silvestre, A.J.D., Barros-Timmons, A., “Grafting Poly(Methyl Methacrylate) (PMMA) from Cork via Atom Transfer Radical Polymerization (ATRP) towards Higher Quality of Three-Dimensional (3D) Printed PMMA/Cork-g-PMMA” Materials. Vol. 12, Issue 9, 1867, 2020.
There are 10 citations in total.

Details

Primary Language English
Subjects Biomaterial
Journal Section Research Article
Authors

Ayberk Sözen 0000-0002-9657-5567

Alperen Doğru 0000-0003-3730-3761

Murat Demir 0000-0001-8670-5412

Havva Nur Özdemir 0000-0002-0630-7340

Yasemin Seki 0000-0002-9267-922X

Early Pub Date April 28, 2023
Publication Date April 29, 2023
Submission Date December 2, 2022
Published in Issue Year 2023 Volume: 7 Issue: 1

Cite

APA Sözen, A., Doğru, A., Demir, M., Özdemir, H. N., et al. (2023). PRODUCTION OF WASTE JUTE DOPED PLA (POLYLACTIC ACID) FILAMENT FOR FFF: EFFECT OF PULVERIZATION. International Journal of 3D Printing Technologies and Digital Industry, 7(1), 124-128. https://doi.org/10.46519/ij3dptdi.1213659
AMA Sözen A, Doğru A, Demir M, Özdemir HN, Seki Y. PRODUCTION OF WASTE JUTE DOPED PLA (POLYLACTIC ACID) FILAMENT FOR FFF: EFFECT OF PULVERIZATION. IJ3DPTDI. April 2023;7(1):124-128. doi:10.46519/ij3dptdi.1213659
Chicago Sözen, Ayberk, Alperen Doğru, Murat Demir, Havva Nur Özdemir, and Yasemin Seki. “PRODUCTION OF WASTE JUTE DOPED PLA (POLYLACTIC ACID) FILAMENT FOR FFF: EFFECT OF PULVERIZATION”. International Journal of 3D Printing Technologies and Digital Industry 7, no. 1 (April 2023): 124-28. https://doi.org/10.46519/ij3dptdi.1213659.
EndNote Sözen A, Doğru A, Demir M, Özdemir HN, Seki Y (April 1, 2023) PRODUCTION OF WASTE JUTE DOPED PLA (POLYLACTIC ACID) FILAMENT FOR FFF: EFFECT OF PULVERIZATION. International Journal of 3D Printing Technologies and Digital Industry 7 1 124–128.
IEEE A. Sözen, A. Doğru, M. Demir, H. N. Özdemir, and Y. Seki, “PRODUCTION OF WASTE JUTE DOPED PLA (POLYLACTIC ACID) FILAMENT FOR FFF: EFFECT OF PULVERIZATION”, IJ3DPTDI, vol. 7, no. 1, pp. 124–128, 2023, doi: 10.46519/ij3dptdi.1213659.
ISNAD Sözen, Ayberk et al. “PRODUCTION OF WASTE JUTE DOPED PLA (POLYLACTIC ACID) FILAMENT FOR FFF: EFFECT OF PULVERIZATION”. International Journal of 3D Printing Technologies and Digital Industry 7/1 (April 2023), 124-128. https://doi.org/10.46519/ij3dptdi.1213659.
JAMA Sözen A, Doğru A, Demir M, Özdemir HN, Seki Y. PRODUCTION OF WASTE JUTE DOPED PLA (POLYLACTIC ACID) FILAMENT FOR FFF: EFFECT OF PULVERIZATION. IJ3DPTDI. 2023;7:124–128.
MLA Sözen, Ayberk et al. “PRODUCTION OF WASTE JUTE DOPED PLA (POLYLACTIC ACID) FILAMENT FOR FFF: EFFECT OF PULVERIZATION”. International Journal of 3D Printing Technologies and Digital Industry, vol. 7, no. 1, 2023, pp. 124-8, doi:10.46519/ij3dptdi.1213659.
Vancouver Sözen A, Doğru A, Demir M, Özdemir HN, Seki Y. PRODUCTION OF WASTE JUTE DOPED PLA (POLYLACTIC ACID) FILAMENT FOR FFF: EFFECT OF PULVERIZATION. IJ3DPTDI. 2023;7(1):124-8.

download

International Journal of 3D Printing Technologies and Digital Industry is lisenced under Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı