Research Article
BibTex RIS Cite

INFLUENCE OF ABRASIVE WATER JET TURNING OPERATING PARAMETERS ON SURFACE ROUGHNESS OF ABS AND PLA 3D PRINTED PARTS MATERIALS

Year 2023, Volume: 7 Issue: 2, 184 - 190, 31.08.2023
https://doi.org/10.46519/ij3dptdi.1247636

Abstract

In this study, PLA and ABS materials produced by 3D printing with 14 mm diameter and 300 mm length were processed by turning with abrasive water jet machining. The effect of processing parameters with abrasive water jet on the surface roughness was investigated. The processing parameters are nozzle feed rate (60-210 mm/min), abrasive flow rate (150-225 g/min), chuck turning speed (75, 125, 175 and 225 RPM) and nozzle distance (3, 5, 7 and 9 mm). Experimental studies have shown that the increase in nozzle feed rate (from 60 to 210 mm/min), abrasive flow rate (from 150 to 225 g/min) and nozzle distance (from 3 to 9 mm) results in average surface roughness values increased by 26%, 35% and 19%, respectively. It was concluded that the increase in the rotation speed of the mirror (from 75 RPM to 225 RPM) resulted in a 17% decrease.

References

  • 1. Abeykoon C, Sri-Amphorn P, Fernando A. “Optimization of fused deposition modeling parameters for improved PLA and ABS 3D printed structures”. International Journal of Lightweight Materials and Manufacture, Vol. 3, Issue 3, Pages 284-297, 2020.
  • 2. Kumar R, Singh R, Farina I. “On the 3D printing of recycled ABS, PLA and HIPS thermoplastics for structural applications”. PSU Research Review, Vol. 2, Issue 2, Pages 115-137, 2018.
  • 3. Camargo JC, Machado ÁR, Almeida EC, Silva EFMS. “Mechanical properties of PLA-graphene filament for FDM 3D printing”. The International Journal of Advanced Manufacturing Technology, Vol. 103, Issue 5, Pages 2423-2443, 2019.
  • 4. Dhinesh SK, Arun PS, Senthil KK, Megalingam A. “Study on flexural and tensile behavior of PLA, ABS and PLA-ABS materials”. Materials Today: Proceedings, Vol. 45, Pages 1175-1180, 2021.
  • 5. Momber AW, Kovacevic R. “Principles of abrasive water jet machining”. Springer Science & Business Media, 2012.
  • 6. Kim K, Kim J. “BN-MWCNT/PPS core-shell structured composite for high thermal conductivity with electrical insulating via particle coating”, Int. J. Sci. Technol. Polymer, Vol. 101, Pages 168-175, 2016.
  • 7. El-Hofy M, Helmy MO, Escobar-Palafox G, Kerrigan K, Scaife R, El-Hofy H. “Abrasive water jet machining of multidirectional CFRP laminates”. Procedia Cirp, Vol. 68, Pages 535-540, 2018.
  • 8. Garikipati P, Balamurugan K. “Abrasive water jet machining studies on AlSi 7+ 63% SiC hybrid composite”. In Advances in Industrial Automation and Smart Manufacturing, Springer, Singapore, Pages 743-751, 2021.
  • 9. Kumar KR, Sreebalaji VS, Pridhar T. “Characterization and optimization of abrasive water jet machining parameters of aluminium/tungsten carbide composites”. Measurement, Vol. 117, Pages 57-66, 2018.
  • 10. Pahuja R, Ramulu M, Hashish M. “Surface quality and kerf width prediction in abrasive water jet machining of metal-composite stacks”. Composites Part B: Engineering, Vol. 175, Pages 107-134, 2019.
  • 11. Nyaboro JN, Ahmed MA, El-Hofy H, El-Hofy M. “Fluid-structure interaction modeling of the abrasive waterjet drilling of carbon fiber reinforced polymers”. Journal of Manufacturing Processes, Vol. 58, Pages 551-562, 2020.
  • 12. Tripathi DR, Vachhani KH, Bandhu D, Kumari S, Kumar VR, Abhishek K. “Experimental investigation and optimization of abrasive waterjet machining parameters for GFRP composites using metaphor-less algorithms”. Materials and Manufacturing Processes, Vol. 36, Issue 7, Pages 803-813, 2021.
  • 13. Hocheng H. “Machining technology for composite materials: principles and practice”, Elsevier, 2011.
  • 14. Srivastava AK, Nag A, Dixit AR, Scucka J, Hloch S, Klichová D, Tiwari S. “Hardness measurement of surfaces on hybrid metal matrix composite created by turning using an abrasive water jet and WED”, IMEKO, Measurement, Vol. 131, Pages 628-639, 2019.
  • 15. Nag A, Ščučka J, Hlavacek P, Klichová D, Srivastava AK, Hloch S, Zelenak M. “Hybrid aluminium matrix composite AWJ turning using olivine and Barton garnet”. Int J. Adv. Manuf. Technol, Vol. 94, Issue 5-8, Pages 2293-2300, 2018.
  • 16. Hutyrová Z, Ščučka J, Hloch S, Hlaváček P, Zeleňák M. “Turning of wood plastic composites by water jet and abrasive water jet”. Int. J. Adv. Manuf. Technol, Vol. 84, Issue 5-8, Pages 1615-1623, 2016.
  • 17. Kartal F. “A review of the current state of abrasive water-jet turning machining method”. Int. J. Adv. Manuf. Technol, Vol. 88, Issue 1-4, Pages 495-505, 2017.
  • 18. Hashish M. “A modeling study of metal cutting with abrasive waterjets”. J. Eng. Mater. Technol, Pages 88-100, 1984.
  • 19. Hashish M. “Turning with abrasive water jets; a first investigation”. J. Eng. Ind, Pages 281-290, 1987. 20. Hu D, Tang CL, Kang Y, Li X. “An investigation on cutting quality by adding polymer in abrasive water jet”. Particulate Sci. Technol, Vol. 34, Issue 3, Pages 352-358, 2016.
  • 21. Kartal F, Çetin MH, Gökkaya H, Yerlikaya Z. “Optimization of abrasive water jet turning parameters for machining of low density polyethylene material based on experimental design method”. Int. Polymer Processing, Vol. 29, Issue 4, Pages 535-544, 2014.
Year 2023, Volume: 7 Issue: 2, 184 - 190, 31.08.2023
https://doi.org/10.46519/ij3dptdi.1247636

Abstract

References

  • 1. Abeykoon C, Sri-Amphorn P, Fernando A. “Optimization of fused deposition modeling parameters for improved PLA and ABS 3D printed structures”. International Journal of Lightweight Materials and Manufacture, Vol. 3, Issue 3, Pages 284-297, 2020.
  • 2. Kumar R, Singh R, Farina I. “On the 3D printing of recycled ABS, PLA and HIPS thermoplastics for structural applications”. PSU Research Review, Vol. 2, Issue 2, Pages 115-137, 2018.
  • 3. Camargo JC, Machado ÁR, Almeida EC, Silva EFMS. “Mechanical properties of PLA-graphene filament for FDM 3D printing”. The International Journal of Advanced Manufacturing Technology, Vol. 103, Issue 5, Pages 2423-2443, 2019.
  • 4. Dhinesh SK, Arun PS, Senthil KK, Megalingam A. “Study on flexural and tensile behavior of PLA, ABS and PLA-ABS materials”. Materials Today: Proceedings, Vol. 45, Pages 1175-1180, 2021.
  • 5. Momber AW, Kovacevic R. “Principles of abrasive water jet machining”. Springer Science & Business Media, 2012.
  • 6. Kim K, Kim J. “BN-MWCNT/PPS core-shell structured composite for high thermal conductivity with electrical insulating via particle coating”, Int. J. Sci. Technol. Polymer, Vol. 101, Pages 168-175, 2016.
  • 7. El-Hofy M, Helmy MO, Escobar-Palafox G, Kerrigan K, Scaife R, El-Hofy H. “Abrasive water jet machining of multidirectional CFRP laminates”. Procedia Cirp, Vol. 68, Pages 535-540, 2018.
  • 8. Garikipati P, Balamurugan K. “Abrasive water jet machining studies on AlSi 7+ 63% SiC hybrid composite”. In Advances in Industrial Automation and Smart Manufacturing, Springer, Singapore, Pages 743-751, 2021.
  • 9. Kumar KR, Sreebalaji VS, Pridhar T. “Characterization and optimization of abrasive water jet machining parameters of aluminium/tungsten carbide composites”. Measurement, Vol. 117, Pages 57-66, 2018.
  • 10. Pahuja R, Ramulu M, Hashish M. “Surface quality and kerf width prediction in abrasive water jet machining of metal-composite stacks”. Composites Part B: Engineering, Vol. 175, Pages 107-134, 2019.
  • 11. Nyaboro JN, Ahmed MA, El-Hofy H, El-Hofy M. “Fluid-structure interaction modeling of the abrasive waterjet drilling of carbon fiber reinforced polymers”. Journal of Manufacturing Processes, Vol. 58, Pages 551-562, 2020.
  • 12. Tripathi DR, Vachhani KH, Bandhu D, Kumari S, Kumar VR, Abhishek K. “Experimental investigation and optimization of abrasive waterjet machining parameters for GFRP composites using metaphor-less algorithms”. Materials and Manufacturing Processes, Vol. 36, Issue 7, Pages 803-813, 2021.
  • 13. Hocheng H. “Machining technology for composite materials: principles and practice”, Elsevier, 2011.
  • 14. Srivastava AK, Nag A, Dixit AR, Scucka J, Hloch S, Klichová D, Tiwari S. “Hardness measurement of surfaces on hybrid metal matrix composite created by turning using an abrasive water jet and WED”, IMEKO, Measurement, Vol. 131, Pages 628-639, 2019.
  • 15. Nag A, Ščučka J, Hlavacek P, Klichová D, Srivastava AK, Hloch S, Zelenak M. “Hybrid aluminium matrix composite AWJ turning using olivine and Barton garnet”. Int J. Adv. Manuf. Technol, Vol. 94, Issue 5-8, Pages 2293-2300, 2018.
  • 16. Hutyrová Z, Ščučka J, Hloch S, Hlaváček P, Zeleňák M. “Turning of wood plastic composites by water jet and abrasive water jet”. Int. J. Adv. Manuf. Technol, Vol. 84, Issue 5-8, Pages 1615-1623, 2016.
  • 17. Kartal F. “A review of the current state of abrasive water-jet turning machining method”. Int. J. Adv. Manuf. Technol, Vol. 88, Issue 1-4, Pages 495-505, 2017.
  • 18. Hashish M. “A modeling study of metal cutting with abrasive waterjets”. J. Eng. Mater. Technol, Pages 88-100, 1984.
  • 19. Hashish M. “Turning with abrasive water jets; a first investigation”. J. Eng. Ind, Pages 281-290, 1987. 20. Hu D, Tang CL, Kang Y, Li X. “An investigation on cutting quality by adding polymer in abrasive water jet”. Particulate Sci. Technol, Vol. 34, Issue 3, Pages 352-358, 2016.
  • 21. Kartal F, Çetin MH, Gökkaya H, Yerlikaya Z. “Optimization of abrasive water jet turning parameters for machining of low density polyethylene material based on experimental design method”. Int. Polymer Processing, Vol. 29, Issue 4, Pages 535-544, 2014.

AŞINDIRICI SU JET TORNALAMA ÇALIŞMA PARAMETRELERİNİN ABS VE PLA 3D BASILI PARÇA MALZEMELERİNİN YÜZEY PÜRÜZLÜLÜĞÜNE ETKİSİ

Year 2023, Volume: 7 Issue: 2, 184 - 190, 31.08.2023
https://doi.org/10.46519/ij3dptdi.1247636

Abstract

Bu çalışmada 14 mm çapında ve 300 mm uzunluğunda 3B baskı ile üretilen PLA ve ABS malzemeleri aşındırıcı su jeti ile tornalanarak işlenmiştir. Aşındırıcı su jeti ile işleme parametrelerinin yüzey pürüzlülüğüne etkisi incelenmiştir. İşleme parametreleri, meme besleme hızı (60-210 mm/dak), aşındırıcı akış hızı (150-225 g/dak), ayna dönüş hızı (75, 125, 175 and 225 RPM) ve meme mesafesidir (3, 5, 7 and 9 mm). Deneysel çalışmalar, nozul ilerleme hızının (60'dan 210 mm/dk'ya), aşındırıcı akış hızındaki (150'den 225 g/dk'ya) ve meme mesafesindeki (3'ten 9 mm'ye) artışın ortalama yüzey pürüzlülük değerlerinin sırasıyla %26, %35 ve %19 oranında artmasına neden olduğunu göstermiştir.. Aynanın dönüş hızındaki artışın (75 dev/dak'dan 225 dev/dak'ya) %17'lik bir düşüşe neden olduğu sonucuna varılmıştır.

References

  • 1. Abeykoon C, Sri-Amphorn P, Fernando A. “Optimization of fused deposition modeling parameters for improved PLA and ABS 3D printed structures”. International Journal of Lightweight Materials and Manufacture, Vol. 3, Issue 3, Pages 284-297, 2020.
  • 2. Kumar R, Singh R, Farina I. “On the 3D printing of recycled ABS, PLA and HIPS thermoplastics for structural applications”. PSU Research Review, Vol. 2, Issue 2, Pages 115-137, 2018.
  • 3. Camargo JC, Machado ÁR, Almeida EC, Silva EFMS. “Mechanical properties of PLA-graphene filament for FDM 3D printing”. The International Journal of Advanced Manufacturing Technology, Vol. 103, Issue 5, Pages 2423-2443, 2019.
  • 4. Dhinesh SK, Arun PS, Senthil KK, Megalingam A. “Study on flexural and tensile behavior of PLA, ABS and PLA-ABS materials”. Materials Today: Proceedings, Vol. 45, Pages 1175-1180, 2021.
  • 5. Momber AW, Kovacevic R. “Principles of abrasive water jet machining”. Springer Science & Business Media, 2012.
  • 6. Kim K, Kim J. “BN-MWCNT/PPS core-shell structured composite for high thermal conductivity with electrical insulating via particle coating”, Int. J. Sci. Technol. Polymer, Vol. 101, Pages 168-175, 2016.
  • 7. El-Hofy M, Helmy MO, Escobar-Palafox G, Kerrigan K, Scaife R, El-Hofy H. “Abrasive water jet machining of multidirectional CFRP laminates”. Procedia Cirp, Vol. 68, Pages 535-540, 2018.
  • 8. Garikipati P, Balamurugan K. “Abrasive water jet machining studies on AlSi 7+ 63% SiC hybrid composite”. In Advances in Industrial Automation and Smart Manufacturing, Springer, Singapore, Pages 743-751, 2021.
  • 9. Kumar KR, Sreebalaji VS, Pridhar T. “Characterization and optimization of abrasive water jet machining parameters of aluminium/tungsten carbide composites”. Measurement, Vol. 117, Pages 57-66, 2018.
  • 10. Pahuja R, Ramulu M, Hashish M. “Surface quality and kerf width prediction in abrasive water jet machining of metal-composite stacks”. Composites Part B: Engineering, Vol. 175, Pages 107-134, 2019.
  • 11. Nyaboro JN, Ahmed MA, El-Hofy H, El-Hofy M. “Fluid-structure interaction modeling of the abrasive waterjet drilling of carbon fiber reinforced polymers”. Journal of Manufacturing Processes, Vol. 58, Pages 551-562, 2020.
  • 12. Tripathi DR, Vachhani KH, Bandhu D, Kumari S, Kumar VR, Abhishek K. “Experimental investigation and optimization of abrasive waterjet machining parameters for GFRP composites using metaphor-less algorithms”. Materials and Manufacturing Processes, Vol. 36, Issue 7, Pages 803-813, 2021.
  • 13. Hocheng H. “Machining technology for composite materials: principles and practice”, Elsevier, 2011.
  • 14. Srivastava AK, Nag A, Dixit AR, Scucka J, Hloch S, Klichová D, Tiwari S. “Hardness measurement of surfaces on hybrid metal matrix composite created by turning using an abrasive water jet and WED”, IMEKO, Measurement, Vol. 131, Pages 628-639, 2019.
  • 15. Nag A, Ščučka J, Hlavacek P, Klichová D, Srivastava AK, Hloch S, Zelenak M. “Hybrid aluminium matrix composite AWJ turning using olivine and Barton garnet”. Int J. Adv. Manuf. Technol, Vol. 94, Issue 5-8, Pages 2293-2300, 2018.
  • 16. Hutyrová Z, Ščučka J, Hloch S, Hlaváček P, Zeleňák M. “Turning of wood plastic composites by water jet and abrasive water jet”. Int. J. Adv. Manuf. Technol, Vol. 84, Issue 5-8, Pages 1615-1623, 2016.
  • 17. Kartal F. “A review of the current state of abrasive water-jet turning machining method”. Int. J. Adv. Manuf. Technol, Vol. 88, Issue 1-4, Pages 495-505, 2017.
  • 18. Hashish M. “A modeling study of metal cutting with abrasive waterjets”. J. Eng. Mater. Technol, Pages 88-100, 1984.
  • 19. Hashish M. “Turning with abrasive water jets; a first investigation”. J. Eng. Ind, Pages 281-290, 1987. 20. Hu D, Tang CL, Kang Y, Li X. “An investigation on cutting quality by adding polymer in abrasive water jet”. Particulate Sci. Technol, Vol. 34, Issue 3, Pages 352-358, 2016.
  • 21. Kartal F, Çetin MH, Gökkaya H, Yerlikaya Z. “Optimization of abrasive water jet turning parameters for machining of low density polyethylene material based on experimental design method”. Int. Polymer Processing, Vol. 29, Issue 4, Pages 535-544, 2014.
There are 20 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Article
Authors

Fuat Kartal 0000-0002-2567-9705

Arslan Kaptan 0000-0002-2431-9329

Publication Date August 31, 2023
Submission Date February 4, 2023
Published in Issue Year 2023 Volume: 7 Issue: 2

Cite

APA Kartal, F., & Kaptan, A. (2023). INFLUENCE OF ABRASIVE WATER JET TURNING OPERATING PARAMETERS ON SURFACE ROUGHNESS OF ABS AND PLA 3D PRINTED PARTS MATERIALS. International Journal of 3D Printing Technologies and Digital Industry, 7(2), 184-190. https://doi.org/10.46519/ij3dptdi.1247636
AMA Kartal F, Kaptan A. INFLUENCE OF ABRASIVE WATER JET TURNING OPERATING PARAMETERS ON SURFACE ROUGHNESS OF ABS AND PLA 3D PRINTED PARTS MATERIALS. IJ3DPTDI. August 2023;7(2):184-190. doi:10.46519/ij3dptdi.1247636
Chicago Kartal, Fuat, and Arslan Kaptan. “INFLUENCE OF ABRASIVE WATER JET TURNING OPERATING PARAMETERS ON SURFACE ROUGHNESS OF ABS AND PLA 3D PRINTED PARTS MATERIALS”. International Journal of 3D Printing Technologies and Digital Industry 7, no. 2 (August 2023): 184-90. https://doi.org/10.46519/ij3dptdi.1247636.
EndNote Kartal F, Kaptan A (August 1, 2023) INFLUENCE OF ABRASIVE WATER JET TURNING OPERATING PARAMETERS ON SURFACE ROUGHNESS OF ABS AND PLA 3D PRINTED PARTS MATERIALS. International Journal of 3D Printing Technologies and Digital Industry 7 2 184–190.
IEEE F. Kartal and A. Kaptan, “INFLUENCE OF ABRASIVE WATER JET TURNING OPERATING PARAMETERS ON SURFACE ROUGHNESS OF ABS AND PLA 3D PRINTED PARTS MATERIALS”, IJ3DPTDI, vol. 7, no. 2, pp. 184–190, 2023, doi: 10.46519/ij3dptdi.1247636.
ISNAD Kartal, Fuat - Kaptan, Arslan. “INFLUENCE OF ABRASIVE WATER JET TURNING OPERATING PARAMETERS ON SURFACE ROUGHNESS OF ABS AND PLA 3D PRINTED PARTS MATERIALS”. International Journal of 3D Printing Technologies and Digital Industry 7/2 (August 2023), 184-190. https://doi.org/10.46519/ij3dptdi.1247636.
JAMA Kartal F, Kaptan A. INFLUENCE OF ABRASIVE WATER JET TURNING OPERATING PARAMETERS ON SURFACE ROUGHNESS OF ABS AND PLA 3D PRINTED PARTS MATERIALS. IJ3DPTDI. 2023;7:184–190.
MLA Kartal, Fuat and Arslan Kaptan. “INFLUENCE OF ABRASIVE WATER JET TURNING OPERATING PARAMETERS ON SURFACE ROUGHNESS OF ABS AND PLA 3D PRINTED PARTS MATERIALS”. International Journal of 3D Printing Technologies and Digital Industry, vol. 7, no. 2, 2023, pp. 184-90, doi:10.46519/ij3dptdi.1247636.
Vancouver Kartal F, Kaptan A. INFLUENCE OF ABRASIVE WATER JET TURNING OPERATING PARAMETERS ON SURFACE ROUGHNESS OF ABS AND PLA 3D PRINTED PARTS MATERIALS. IJ3DPTDI. 2023;7(2):184-90.

download

International Journal of 3D Printing Technologies and Digital Industry is lisenced under Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı