Research Article
BibTex RIS Cite

DESIGN AND STRUCTURAL ANALYSIS OF 3D-PRINTED POROUS POLYLACTIC ACID/HYDROXYAPATITE SCAFFOLDS

Year 2024, Volume: 8 Issue: 1, 71 - 79, 30.04.2024
https://doi.org/10.46519/ij3dptdi.1347163

Abstract

Different designs of three-dimensional (3D) structures have gained increasingly significant in bone tissue engineering. For scaffolds, having appropriate porosity and adequate mechanical properties is crucial. The porosity and mechanical properties of scaffolds are higly influenced by their 3D modeled design. By evaluating the mechanical properties of scaffolds with various designs, it can be confirmed that they could serve as an important platform for the regeneration of damaged bone tissue. In this study, a diverse range of unit cells and lattice structures featuring different pore structures of polylactic acid (PLA)/hydroxyapatite (HA) based scaffolds were modeled and designed. Structural analyses of the designed models were conducted in a simulation environment and their mechanical properties were compared with similar studies. The results suggest that PLA/HA-based scaffolds with different designs hold high potential for applications in bone tissue engineering.

References

  • 1. Shea, L.D., Wang, D., Franceschi, R.T., Mooney, D.J., “Engineered bone development from a pre-osteoblast cell line on three-dimensional scaffolds”, Tissue Engineering, Vol. 6, Pages 605-617, 2000.
  • 2.Mondal, S., Nguyen, T.P., Hoang, G., Maniva-sagan, P., Kim, M.H., Nam, S.Y., & Oh, J., “Hydroxyapatite nano bioceramics optimized 3D prin-ted poly lactic acid scaffold for bone tissue engi-neering application”, Ceramics International, Vol. 46, Issue 3, Pages 3443-3455, 2020.
  • 3.Burg, K.J.L., Porter, S., & Kellam, J.F., “Biomaterial developments for bone tissue engineering”, Biomaterials, Vol. 21, Pages 2347-2359, 2000.
  • 4.Bulut, B. & Duman, Ş., “Evaluation of mechanical behavior, bioactivity, and cytotoxicity of chitosan/akermanite-TiO2 3D-printed scaffolds for bone tissue applications”, Ceramics International, Vol. 48, Issue 15, Pages 21378-21388, 2022.
  • 5.Persson, M., Lorite, G.S., Kokkonen, H.E., Cho, S.W., Lehenkari, P.P., Skrifvars, M., & Tuukkanen, J., “Effect of bioactive extruded PLA/HA composi-te films on focal adhesion formation of preosteob-lastic cells”, Colloids and Surfaces B: Biointerfa-ces, Vol. 121, Pages 409-416, 2014.
  • 6.Garlotta, D., “A literature review of poly (lactic acid)”, Journal of Polymers and the Environ-ment, Vol. 9, Issue 2, Pages 63-84, 2001. 7.Nampoothiri, K.M., Nair, N.R., & John, R.P., “An overview of the recent developments in poly-lactide (PLA) research”, Bioresource Techno-logy, Vol. 101, Issue 22, Pages 8493-8501, 2010.
  • 8.Gentile, P., Chiono, V., Carmagnola, I., & Hat-ton, P.V., “An overview of poly (lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering”, International Journal of Mole-cular Sciences, Vol. 15, Issue 3, Pages 3640-3659, 2014.
  • 9.Revati, R., Majid, M.A., Ridzuan, M.J.M., Normahira, M., Nasir, N.M., & Gibson, A.G., “Mechanical, thermal and morphological characte-risation of 3D porous Pennisetum purpureum/PLA biocomposites scaffold”, Materials Science and Engineering: C, Vol. 75, Pages 752-759, 2017.
  • 10.Sui, G., Yang, X., Mei, F., Hu, X., Chen, G., Deng, X., & Ryu, S., “Poly‐L‐lactic acid/hydroxyapatite hybrid membrane for bone tissue regeneration”, Journal of Biomedical Mate-rials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Bio-materials and the Korean Society for Biomaterials, Vol. 82, Issue 2, Pages 445-454, 2007.
  • 11.Cui, Y., Liu, Y., Cui, Y., Jing, X., Zhang, P., & Chen, X., “The nanocomposite scaffold of poly (lactide-co-glycolide) and hydroxyapatite surface-grafted with L-lactic acid oligomer for bone re-pair”, Acta Biomaterialia, Vol. 5, Issue 7, Pages 2680-2692, 2009.
  • 12.Hong, Z., Zhang, P., He, C., Qiu, X., Liu, A., Chen, L., Chen, X., & Jing, X., “Nano-composite of poly (L-lactide) and surface grafted hydroxya-patite: mechanical properties and biocompatibi-lity”, Biomaterials, Vol. 26, Issue 32, Pages 6296-6304, 2005.
  • 13.Zhou, H., & Lee, J., “Nanoscale hydroxyapati-te particles for bone tissue engineering”, Acta biomaterialia, Vol. 7, Issue 7, Pages 2769-2781, 2011.
  • 14.Zhang, X.Z., Leary, M., Tang, H.P., Song, T., Qian, M., “Selective electron beam manufactured Ti-6Al-4V lattice structures for orthopedic implant applications: Current status and outstanding chal-lenges”, Current Opinion in Solid State and Mate-rial Science, Vol. 22, Issue 3, Pages 75-99, 2018.
  • 15.Maconachie, T., Leary, M., Lozanovski, B., Zhang, X., Qian, M., Faruque, O., Brandt, M., “SLM lattice structures: Properties, performance, applications and challenges”, Materials and De-sign, Vol. 183, Pages 108-137, 2019.
  • 16.Yuan, L., Ding, S., & Wen, C., “Additive manufacturing technology for porous metal implant applications and triple minimal surface structures: A review”, Bioactive Materials, Vol. 4, Pages 56-70, 2019.
  • 17.Helou, M. & Kara, S., “Design, analysis and manufacturing of lattice structures: an overview”, International Journal of Computer Integrated Ma-nufacturing, Vol. 31, Issue 3, Pages 243-261, 2018.
  • 18.Fousová, M., Vojtěch, D., Kubásek, J., Jab-lonská, E., Fojt, J., “Promising characteristics of gradient porosity Ti-6Al-4V alloy prepared by SLM process”, Journal of the Mechanical Behavior of Biomedical Materials, Vol. 69, Pages 368-376, 2017.
  • 19.Li, X., Wang, C., Zhang, W., Li, Y., “Fabrica-tion and characterization of porous Ti6Al-4Vparts for biomedical applications using electron beam melting process”, Materials Letters, Vol. 63, Pages 403-405, 2009.
  • 20.Chethan, K.N., Zuber, M., Shenoy, S., Kini, C.R., “Static structural analysis of different stem designs used in total hip arthroplasty using finite element method”, Heliyon, Vol. 5, Issue 6, Pages e01767, 2019.
  • 21.Studart, A.R., Gonzenbach, U.T., Tervoort, E., Gauckler, L.J., “Processing routes to macroporous ceramics: a review”, Journal of the American Ceramic Society, Vol. 89, Issue 6, Pages 1771-1789, 2006.
  • 22.Mutlu, B., Çaylak, S., & Duman, Ş. “Incorporation of cerium oxide into hydroxyapatite/chitosan composite scaffolds for bone repair”, Processing and Application of Ceramics, Vol. 16, Issue 3, Pages 207-217, 2022.
  • 23.Singh, D., Babbar, A., Jain, V., Gupta, D., Saxena, S., & Dwibedi, V., “Synthesis, characteri-zation, and bioactivity investigation of biomimetic biodegradable PLA scaffold fabricated by fused filament fabrication process”, Journal of the Brazi-lian Society of Mechanical Sciences and Enginee-ring, Vol. 41, Issue 3, Pages 1-13, 2019.
  • 24.Duman, Ş. & Bulut, B., “Effect of akermanite powders on mechanical properties and bioactivity of chitosan-based scaffolds produced by 3D-bioprinting”, Ceramics International, Vol. 47, Issue 10, Pages 13912-13921, 2021.
  • 25.Habib, F., Iovenitti, P., Masood, S., Nikzad, M., & Ruan, D., “Design and evaluation of 3D printed polymeric cellular materials for dynamic energy absorption”, International Journal of Ad-vanced Manufacturing Technology, Vol. 103, Issue 5, Pages 2347–2361, 2019.
  • 26.Torres, J., Cotelo, J., Karl, J., & Gordon, A.P., “Mechanical property optimization of FDM PLA in shear with multiple objectives”, JOM: The Jour-nal of the Minerals, Metals & Materials Soci-ety, Vol. 67 Issue 5, Pages 1183-1193, 2015.
  • 27.The Biomedical Engineering Handbook, Jo-seph D. Bronzino, Ed. CRC Press in Cooperation with IEEE Press, Boca Raton, FL, 1995.
  • 28.Gurkan, U.A., El Assal, R., Yildiz, S.E., Sung, Y., Trachtenberg, A.J., Kuo, W.P., & Demirci, U., “Engineering anisotropic biomimetic fibrocartila-ge microenvironment by bioprinting mesenchymal stem cells in nanoliter gel droplets”, Molecular Pharmaceutics, Vol. 11, Issue 7, Pages 2151-2159, 2014.
  • 29.Evlen, H., Özdemir, M.A., & Çalışkan, A., “Doluluk oranlarının PLA ve PET malzemelerin mekanik özellikleri üzerine etkileri”, PoliTeknik Dergisi, Vol. 22, Issue 4, Pages 1031-1037, 2019.
  • 30.Adhikari, J., Perwez, M. S., Das, A., & Saha, P., “Development of hydroxyapatite reinforced alginate–chitosan based printable biomaterial-ink”, Nano-Structures & Nano-Objects, Vol. 25, Pages 100630, 2021.
  • 31.Liu, Q., Li, Q., Xu, S., Zheng, Q., & Cao, X., “Preparation and properties of 3D printed alginate–chitosan polyion complex hydrogels for tissue engineering”, Polymers, Vol. 10, Issue 6, Pages 664, 2018.
  • 32.Russias, J., Saiz, E., Nalla, R.K., Gryn, K., Ritchie, R.O., & Tomsia, A.P., “Fabrication and mechanical properties of PLA/HA composites: A study of in vitro degradation”, Materials science & engineering. C, Biomimetic and SupraMolecular Systems, Vol. 26, Issue 8, Pages 1289-1295, 2006.
  • 33.Maden, H. & Kamber, Ö.Ş., “FDM teknoloji ile üretilen prototip parçalarinin hatalari ve hatala-rin önlenmesi”, International Journal of 3D Prin-ting Technologies and Digital Industry, Vol. 2, Issue 1, Pages 40-51, 2018.
  • 34.Sun, L. & Liu, X., “Control analysis of pro-duction and apparent quality of automobile large plastic parts”, Procedia Engineering, Vol. 16, Pa-ges 438-443, 2011.
  • 35.Guduric, V., Metz, C., Siadous, R., Bareille, R., Levato, R., Engel, E., Fricain, J.-C., Devillard, R., Luzanin, O., & Catros, S., “Layer-by-layer bioassembly of cellularized polylactic acid porous membranes for bone tissue engineering”, Journal of Materials Science: Materials in Medicine, Vol. 28, Issue 5, Pages 1-11, 2017.
  • 36.Azami, M., Rabiee, M., & Moztarzadeh, F., “Glutaraldehyde crosslinked gela-tin/hydroxyapatite nanocomposite scaffold, engi-neered via compound techniques”, Polymer Com-posites, Vol. 31, Issue 12, Pages 2112-2120, 2010.
  • 37. Ko, C.C., Oyen, M., Fallgatter, A.M., & Hu, W.S., “Effects of gelatin on mechanical properties of hydroxyapatite-gelatin nano-composites”, MRS Online Proceedings Library (OPL), Symposium L – Mechanical Behavior of Biological and Biomi-metic Materials, Vol. 898, 2005.
  • 38.Senatov, F.S., Niaza, K.V., Zadorozhnyy, M.Y., Maksimkin, A.V., Kaloshkin, S.D., & Estrin, Y.Z., “Mechanical properties and shape memory effect of 3D-printed PLA-based porous scaf-folds”, Journal of the Mechanical Behavior of Biomedical Materials, Vol. 57, Pages 139-148, 2016.
  • 39.Zimina, A., Senatov, F., Choudhary, R., Ko-lesnikov, E., Anisimova, N., Kiselevskiy, M., Or-lova, P., Strukova, N., Generalova, M., Manskikh, V., Gromov, A., & Karyagina, A., “Biocompatibi-lity and physico-chemical properties of highly porous PLA/HA scaffolds for bone reconstruc-tion”, Polymers, Vol. 12, Issue 12, Pages 2938, 2020.
  • 40.Hu, X., Man, Y., Li, W., Li, L., Xu, J., Parun-gao, R., Wang, Y., Zheng, S., Nie, Y., Liu, T., & Song, K., “3D bio-printing of CS/Gel/HA/Gr hyb-rid osteochondral scaffolds”, Polymers (Basel), Vol. 11, Issue 10, Pages 1601, 2019.

DESIGN AND STRUCTURAL ANALYSIS OF 3D-PRINTED POROUS POLYLACTIC ACID/HYDROXYAPATITE SCAFFOLDS

Year 2024, Volume: 8 Issue: 1, 71 - 79, 30.04.2024
https://doi.org/10.46519/ij3dptdi.1347163

Abstract

Different designs of three-dimensional (3D) structures have gained increasing importance in the field of bone tissue engineering. Appropriate porosity and adequate mechanical properties are essen-tial requirements for scaffolds. The porosity and mechanical properties of the scaffolds higly depend on their 3D-modeled design. By analyzing the mechanical properties of scaffolds of different designs, it can be confirmed that it can be an important potential platform for regenerating damaged bone tis-sue. In this study, a wide variety of unit cells and lattice structures with different pore structures of polylactic acid (PLA)/hydroxyapatite (HA) based scaffolds were modeled and designed. Structural analyzes of the designed models were carried out in the simulation environment and their mechanical properties were compared with similar studies. According to the obtained results, PLA/HA-based scaffolds with different designs are thought to have high potential for bone tissue engineering appli-cations.

References

  • 1. Shea, L.D., Wang, D., Franceschi, R.T., Mooney, D.J., “Engineered bone development from a pre-osteoblast cell line on three-dimensional scaffolds”, Tissue Engineering, Vol. 6, Pages 605-617, 2000.
  • 2.Mondal, S., Nguyen, T.P., Hoang, G., Maniva-sagan, P., Kim, M.H., Nam, S.Y., & Oh, J., “Hydroxyapatite nano bioceramics optimized 3D prin-ted poly lactic acid scaffold for bone tissue engi-neering application”, Ceramics International, Vol. 46, Issue 3, Pages 3443-3455, 2020.
  • 3.Burg, K.J.L., Porter, S., & Kellam, J.F., “Biomaterial developments for bone tissue engineering”, Biomaterials, Vol. 21, Pages 2347-2359, 2000.
  • 4.Bulut, B. & Duman, Ş., “Evaluation of mechanical behavior, bioactivity, and cytotoxicity of chitosan/akermanite-TiO2 3D-printed scaffolds for bone tissue applications”, Ceramics International, Vol. 48, Issue 15, Pages 21378-21388, 2022.
  • 5.Persson, M., Lorite, G.S., Kokkonen, H.E., Cho, S.W., Lehenkari, P.P., Skrifvars, M., & Tuukkanen, J., “Effect of bioactive extruded PLA/HA composi-te films on focal adhesion formation of preosteob-lastic cells”, Colloids and Surfaces B: Biointerfa-ces, Vol. 121, Pages 409-416, 2014.
  • 6.Garlotta, D., “A literature review of poly (lactic acid)”, Journal of Polymers and the Environ-ment, Vol. 9, Issue 2, Pages 63-84, 2001. 7.Nampoothiri, K.M., Nair, N.R., & John, R.P., “An overview of the recent developments in poly-lactide (PLA) research”, Bioresource Techno-logy, Vol. 101, Issue 22, Pages 8493-8501, 2010.
  • 8.Gentile, P., Chiono, V., Carmagnola, I., & Hat-ton, P.V., “An overview of poly (lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering”, International Journal of Mole-cular Sciences, Vol. 15, Issue 3, Pages 3640-3659, 2014.
  • 9.Revati, R., Majid, M.A., Ridzuan, M.J.M., Normahira, M., Nasir, N.M., & Gibson, A.G., “Mechanical, thermal and morphological characte-risation of 3D porous Pennisetum purpureum/PLA biocomposites scaffold”, Materials Science and Engineering: C, Vol. 75, Pages 752-759, 2017.
  • 10.Sui, G., Yang, X., Mei, F., Hu, X., Chen, G., Deng, X., & Ryu, S., “Poly‐L‐lactic acid/hydroxyapatite hybrid membrane for bone tissue regeneration”, Journal of Biomedical Mate-rials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Bio-materials and the Korean Society for Biomaterials, Vol. 82, Issue 2, Pages 445-454, 2007.
  • 11.Cui, Y., Liu, Y., Cui, Y., Jing, X., Zhang, P., & Chen, X., “The nanocomposite scaffold of poly (lactide-co-glycolide) and hydroxyapatite surface-grafted with L-lactic acid oligomer for bone re-pair”, Acta Biomaterialia, Vol. 5, Issue 7, Pages 2680-2692, 2009.
  • 12.Hong, Z., Zhang, P., He, C., Qiu, X., Liu, A., Chen, L., Chen, X., & Jing, X., “Nano-composite of poly (L-lactide) and surface grafted hydroxya-patite: mechanical properties and biocompatibi-lity”, Biomaterials, Vol. 26, Issue 32, Pages 6296-6304, 2005.
  • 13.Zhou, H., & Lee, J., “Nanoscale hydroxyapati-te particles for bone tissue engineering”, Acta biomaterialia, Vol. 7, Issue 7, Pages 2769-2781, 2011.
  • 14.Zhang, X.Z., Leary, M., Tang, H.P., Song, T., Qian, M., “Selective electron beam manufactured Ti-6Al-4V lattice structures for orthopedic implant applications: Current status and outstanding chal-lenges”, Current Opinion in Solid State and Mate-rial Science, Vol. 22, Issue 3, Pages 75-99, 2018.
  • 15.Maconachie, T., Leary, M., Lozanovski, B., Zhang, X., Qian, M., Faruque, O., Brandt, M., “SLM lattice structures: Properties, performance, applications and challenges”, Materials and De-sign, Vol. 183, Pages 108-137, 2019.
  • 16.Yuan, L., Ding, S., & Wen, C., “Additive manufacturing technology for porous metal implant applications and triple minimal surface structures: A review”, Bioactive Materials, Vol. 4, Pages 56-70, 2019.
  • 17.Helou, M. & Kara, S., “Design, analysis and manufacturing of lattice structures: an overview”, International Journal of Computer Integrated Ma-nufacturing, Vol. 31, Issue 3, Pages 243-261, 2018.
  • 18.Fousová, M., Vojtěch, D., Kubásek, J., Jab-lonská, E., Fojt, J., “Promising characteristics of gradient porosity Ti-6Al-4V alloy prepared by SLM process”, Journal of the Mechanical Behavior of Biomedical Materials, Vol. 69, Pages 368-376, 2017.
  • 19.Li, X., Wang, C., Zhang, W., Li, Y., “Fabrica-tion and characterization of porous Ti6Al-4Vparts for biomedical applications using electron beam melting process”, Materials Letters, Vol. 63, Pages 403-405, 2009.
  • 20.Chethan, K.N., Zuber, M., Shenoy, S., Kini, C.R., “Static structural analysis of different stem designs used in total hip arthroplasty using finite element method”, Heliyon, Vol. 5, Issue 6, Pages e01767, 2019.
  • 21.Studart, A.R., Gonzenbach, U.T., Tervoort, E., Gauckler, L.J., “Processing routes to macroporous ceramics: a review”, Journal of the American Ceramic Society, Vol. 89, Issue 6, Pages 1771-1789, 2006.
  • 22.Mutlu, B., Çaylak, S., & Duman, Ş. “Incorporation of cerium oxide into hydroxyapatite/chitosan composite scaffolds for bone repair”, Processing and Application of Ceramics, Vol. 16, Issue 3, Pages 207-217, 2022.
  • 23.Singh, D., Babbar, A., Jain, V., Gupta, D., Saxena, S., & Dwibedi, V., “Synthesis, characteri-zation, and bioactivity investigation of biomimetic biodegradable PLA scaffold fabricated by fused filament fabrication process”, Journal of the Brazi-lian Society of Mechanical Sciences and Enginee-ring, Vol. 41, Issue 3, Pages 1-13, 2019.
  • 24.Duman, Ş. & Bulut, B., “Effect of akermanite powders on mechanical properties and bioactivity of chitosan-based scaffolds produced by 3D-bioprinting”, Ceramics International, Vol. 47, Issue 10, Pages 13912-13921, 2021.
  • 25.Habib, F., Iovenitti, P., Masood, S., Nikzad, M., & Ruan, D., “Design and evaluation of 3D printed polymeric cellular materials for dynamic energy absorption”, International Journal of Ad-vanced Manufacturing Technology, Vol. 103, Issue 5, Pages 2347–2361, 2019.
  • 26.Torres, J., Cotelo, J., Karl, J., & Gordon, A.P., “Mechanical property optimization of FDM PLA in shear with multiple objectives”, JOM: The Jour-nal of the Minerals, Metals & Materials Soci-ety, Vol. 67 Issue 5, Pages 1183-1193, 2015.
  • 27.The Biomedical Engineering Handbook, Jo-seph D. Bronzino, Ed. CRC Press in Cooperation with IEEE Press, Boca Raton, FL, 1995.
  • 28.Gurkan, U.A., El Assal, R., Yildiz, S.E., Sung, Y., Trachtenberg, A.J., Kuo, W.P., & Demirci, U., “Engineering anisotropic biomimetic fibrocartila-ge microenvironment by bioprinting mesenchymal stem cells in nanoliter gel droplets”, Molecular Pharmaceutics, Vol. 11, Issue 7, Pages 2151-2159, 2014.
  • 29.Evlen, H., Özdemir, M.A., & Çalışkan, A., “Doluluk oranlarının PLA ve PET malzemelerin mekanik özellikleri üzerine etkileri”, PoliTeknik Dergisi, Vol. 22, Issue 4, Pages 1031-1037, 2019.
  • 30.Adhikari, J., Perwez, M. S., Das, A., & Saha, P., “Development of hydroxyapatite reinforced alginate–chitosan based printable biomaterial-ink”, Nano-Structures & Nano-Objects, Vol. 25, Pages 100630, 2021.
  • 31.Liu, Q., Li, Q., Xu, S., Zheng, Q., & Cao, X., “Preparation and properties of 3D printed alginate–chitosan polyion complex hydrogels for tissue engineering”, Polymers, Vol. 10, Issue 6, Pages 664, 2018.
  • 32.Russias, J., Saiz, E., Nalla, R.K., Gryn, K., Ritchie, R.O., & Tomsia, A.P., “Fabrication and mechanical properties of PLA/HA composites: A study of in vitro degradation”, Materials science & engineering. C, Biomimetic and SupraMolecular Systems, Vol. 26, Issue 8, Pages 1289-1295, 2006.
  • 33.Maden, H. & Kamber, Ö.Ş., “FDM teknoloji ile üretilen prototip parçalarinin hatalari ve hatala-rin önlenmesi”, International Journal of 3D Prin-ting Technologies and Digital Industry, Vol. 2, Issue 1, Pages 40-51, 2018.
  • 34.Sun, L. & Liu, X., “Control analysis of pro-duction and apparent quality of automobile large plastic parts”, Procedia Engineering, Vol. 16, Pa-ges 438-443, 2011.
  • 35.Guduric, V., Metz, C., Siadous, R., Bareille, R., Levato, R., Engel, E., Fricain, J.-C., Devillard, R., Luzanin, O., & Catros, S., “Layer-by-layer bioassembly of cellularized polylactic acid porous membranes for bone tissue engineering”, Journal of Materials Science: Materials in Medicine, Vol. 28, Issue 5, Pages 1-11, 2017.
  • 36.Azami, M., Rabiee, M., & Moztarzadeh, F., “Glutaraldehyde crosslinked gela-tin/hydroxyapatite nanocomposite scaffold, engi-neered via compound techniques”, Polymer Com-posites, Vol. 31, Issue 12, Pages 2112-2120, 2010.
  • 37. Ko, C.C., Oyen, M., Fallgatter, A.M., & Hu, W.S., “Effects of gelatin on mechanical properties of hydroxyapatite-gelatin nano-composites”, MRS Online Proceedings Library (OPL), Symposium L – Mechanical Behavior of Biological and Biomi-metic Materials, Vol. 898, 2005.
  • 38.Senatov, F.S., Niaza, K.V., Zadorozhnyy, M.Y., Maksimkin, A.V., Kaloshkin, S.D., & Estrin, Y.Z., “Mechanical properties and shape memory effect of 3D-printed PLA-based porous scaf-folds”, Journal of the Mechanical Behavior of Biomedical Materials, Vol. 57, Pages 139-148, 2016.
  • 39.Zimina, A., Senatov, F., Choudhary, R., Ko-lesnikov, E., Anisimova, N., Kiselevskiy, M., Or-lova, P., Strukova, N., Generalova, M., Manskikh, V., Gromov, A., & Karyagina, A., “Biocompatibi-lity and physico-chemical properties of highly porous PLA/HA scaffolds for bone reconstruc-tion”, Polymers, Vol. 12, Issue 12, Pages 2938, 2020.
  • 40.Hu, X., Man, Y., Li, W., Li, L., Xu, J., Parun-gao, R., Wang, Y., Zheng, S., Nie, Y., Liu, T., & Song, K., “3D bio-printing of CS/Gel/HA/Gr hyb-rid osteochondral scaffolds”, Polymers (Basel), Vol. 11, Issue 10, Pages 1601, 2019.
There are 39 citations in total.

Details

Primary Language Turkish
Subjects Biomaterial , Simulation, Modelling, and Programming of Mechatronics Systems
Journal Section Research Article
Authors

Nurcan Acar This is me 0000-0003-3094-7265

M. Kürşat Terzi 0000-0001-6013-2855

Adem Yılmaz 0000-0002-5501-7526

Rümeysa Aydoğdu This is me 0000-0001-9340-8467

Büşra Mutlu 0000-0002-9946-6729

Şeyma Duman 0000-0002-6685-5656

Early Pub Date April 26, 2024
Publication Date April 30, 2024
Submission Date August 23, 2023
Published in Issue Year 2024 Volume: 8 Issue: 1

Cite

APA Acar, N., Terzi, M. K., Yılmaz, A., Aydoğdu, R., et al. (2024). DESIGN AND STRUCTURAL ANALYSIS OF 3D-PRINTED POROUS POLYLACTIC ACID/HYDROXYAPATITE SCAFFOLDS. International Journal of 3D Printing Technologies and Digital Industry, 8(1), 71-79. https://doi.org/10.46519/ij3dptdi.1347163
AMA Acar N, Terzi MK, Yılmaz A, Aydoğdu R, Mutlu B, Duman Ş. DESIGN AND STRUCTURAL ANALYSIS OF 3D-PRINTED POROUS POLYLACTIC ACID/HYDROXYAPATITE SCAFFOLDS. IJ3DPTDI. April 2024;8(1):71-79. doi:10.46519/ij3dptdi.1347163
Chicago Acar, Nurcan, M. Kürşat Terzi, Adem Yılmaz, Rümeysa Aydoğdu, Büşra Mutlu, and Şeyma Duman. “DESIGN AND STRUCTURAL ANALYSIS OF 3D-PRINTED POROUS POLYLACTIC ACID/HYDROXYAPATITE SCAFFOLDS”. International Journal of 3D Printing Technologies and Digital Industry 8, no. 1 (April 2024): 71-79. https://doi.org/10.46519/ij3dptdi.1347163.
EndNote Acar N, Terzi MK, Yılmaz A, Aydoğdu R, Mutlu B, Duman Ş (April 1, 2024) DESIGN AND STRUCTURAL ANALYSIS OF 3D-PRINTED POROUS POLYLACTIC ACID/HYDROXYAPATITE SCAFFOLDS. International Journal of 3D Printing Technologies and Digital Industry 8 1 71–79.
IEEE N. Acar, M. K. Terzi, A. Yılmaz, R. Aydoğdu, B. Mutlu, and Ş. Duman, “DESIGN AND STRUCTURAL ANALYSIS OF 3D-PRINTED POROUS POLYLACTIC ACID/HYDROXYAPATITE SCAFFOLDS”, IJ3DPTDI, vol. 8, no. 1, pp. 71–79, 2024, doi: 10.46519/ij3dptdi.1347163.
ISNAD Acar, Nurcan et al. “DESIGN AND STRUCTURAL ANALYSIS OF 3D-PRINTED POROUS POLYLACTIC ACID/HYDROXYAPATITE SCAFFOLDS”. International Journal of 3D Printing Technologies and Digital Industry 8/1 (April 2024), 71-79. https://doi.org/10.46519/ij3dptdi.1347163.
JAMA Acar N, Terzi MK, Yılmaz A, Aydoğdu R, Mutlu B, Duman Ş. DESIGN AND STRUCTURAL ANALYSIS OF 3D-PRINTED POROUS POLYLACTIC ACID/HYDROXYAPATITE SCAFFOLDS. IJ3DPTDI. 2024;8:71–79.
MLA Acar, Nurcan et al. “DESIGN AND STRUCTURAL ANALYSIS OF 3D-PRINTED POROUS POLYLACTIC ACID/HYDROXYAPATITE SCAFFOLDS”. International Journal of 3D Printing Technologies and Digital Industry, vol. 8, no. 1, 2024, pp. 71-79, doi:10.46519/ij3dptdi.1347163.
Vancouver Acar N, Terzi MK, Yılmaz A, Aydoğdu R, Mutlu B, Duman Ş. DESIGN AND STRUCTURAL ANALYSIS OF 3D-PRINTED POROUS POLYLACTIC ACID/HYDROXYAPATITE SCAFFOLDS. IJ3DPTDI. 2024;8(1):71-9.

download

International Journal of 3D Printing Technologies and Digital Industry is lisenced under Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı