Research Article
BibTex RIS Cite

SHORT-BEAM STRENGTH COMPARISON OF ADDITIVELY MANUFACTURED FLAT AND CURVED CARBON FIBER-REINFORCED POLYMER MATRIX COMPOSITE MATERIALS

Year 2024, Volume: 8 Issue: 3, 352 - 360, 30.12.2024
https://doi.org/10.46519/ij3dptdi.1534538

Abstract

This study presents a comparative analysis of the short-beam strength of flat and curved polymer matrix composites which were manufactured by using additive manufacturing technology. Unidirectional continuous carbon fiber-reinforced composite short beams which were manufactured through the continuous filament fabrication method, had been classified into three geometrically distinct sample groups and then subjected to three-point bending tests. Force and displacement data were obtained during the test, and the test progression was observed graphically along the force-displacement and stress-displacement curves. The concept of specific strength was also included into the study to provide an objective basis for comparing short-beam strength. Although the curved composite short-beam exhibited slightly lower strength than a flat beam with equivalent properties, its energy storage capacity increased. However, when the thickness of the curved beam was increased by 50% and the carbon fiber content was doubled, its strength increased by 19%, although a 23% decrease in specific strength was observed. This study aims to contribute to the understanding of the adequately unstudied mechanical performance of 3D-printed composites with continuous filament fabrication, which is a new technique based on fused deposition modeling, to raise awareness, and to provide guidance for future engineering applications.

References

  • 1. Karagöz, İ., Danış Bekdemir, A. ve Tuna, Ö., “3B yazıcı teknolojilerindeki kullanılan yöntemler ve gelişmeler üzerine bir derleme”, Düzce Üniversitesi Bilim ve Teknoloji Dergisi, Cilt 9, Sayı 4, Sayfa 1186-1213, 2021.
  • 2. Altun, S. ve Sekban, B., “3B yazıcılar için cam fiber katkılı kompozit filament üretimi ve mekanik özellikleri”, Int. J. of 3D Printing Tech. Dig. Ind., Cilt 7, Sayı 1, Sayfa 64-67, 2023.
  • 3. Süsler, S. and Kazancı, Z., “Delamination strength comparison of additively manufactured composite curved beams using continuous fibers”, Polymers, Vol. 15, Issue 19, Pages 3928, 2023.
  • 4. Brunken, B., Barocio, E., Favaloro, A. and Kunc, V., “Fused filament fabrication of fiber-reinforced polymers: A review.”, Addit. Manuf., Vol. 21, Pages 1-16, 2018.
  • 5. ASTM International, “ASTM D2344/D2344M-22 Standard Test Method for Short-Beam Strength of Polymer Matrix Composite Materials and Their Laminates”, https://doi.org/10.1520/D2344_D2344M-22, April 2, 2024.
  • 6. Fijul Kabir, S.M., Mathur, K. and Seyam, A.F.M., “A critical review on 3D printed continuous fiber-reinforced composites: History, mechanism, materials and properties”, Compos. Struct., Vol. 232, Pages 111476, 2020.
  • 7. Handwerker, M., Wellnitz, J. and Marzbani, H., “Review of mechanical properties of and optimisation methods for continuous fibre-reinforced thermoplastic parts manufactured by fused deposition modelling”, Prog. Addit. Manuf., Vol. 6, Pages 663-677, 2021.
  • 8. Jamal, M.A., Shah, O.R., Ghafoor, U., Qureshi, Y. and Bhutta, M.R, “Additive manufacturing of continuous fiber-reinforced polymer composites via fused deposition modelling: A comprehensive review”, Polymers, Vol. 16, Pages 1622, 2024.
  • 9. Yang, C., Tian, X., Liu, T., Cao, Y. and Li, D., “3D printing for continuous fiber reinforced thermoplastic composites: Mechanism and performance”, Rapid Prototyp. J., Vol. 23, Pages 209-215, 2017.
  • 10. Caminero, M.A., Chacón, J.M., García-Moreno, I. and Reverte, J.M., “Interlaminar bonding performance of 3D printed continuous fibre reinforced thermoplastic composites using fused deposition modelling”, Polym. Test., Vol. 68, Pages 415-423, 2018.
  • 11. Iragi, M., Pascual-González, C., Esnaola, A., Lopes, C.S., and Aretxabaleta, L., “Ply and interlaminar behaviours of 3D printed continuous carbon fibre-reinforced thermoplastic laminates; effects of processing conditions and microstructure”, Addit. Manuf., Vol. 30, Pages 100884, 2019.
  • 12. Yavas, D., Zhang, Z., Liu, Q. and Wu, D., “Interlaminar shear behavior of continuous and short carbon fiber reinforced polymer composites fabricated by additive manufacturing”, Compos. Part B Eng., Vol. 204, Pages 108460, 2021.
  • 13. Santos, J.D., Fernández, A., Ripoll, L. and Blanco, N., “Experimental characterization and analysis of the in-plane elastic properties and interlaminar fracture toughness of a 3D-printed continuous carbon fiber-reinforced composite”, Polymers, Vol. 14, Pages 506, 2022.
  • 14. Markforged®, “Mark Two 3D Printer”, https://markforged.com/3d-printers/mark-two, September 1, 2023.
  • 15. Markforged®, Carbon Fiber, https://markforged.com/materials/continuous-fibers/continuous-carbon-fiber, September 25, 2024.
  • 16. Markforged®, “Eiger Software”, https://www.eiger.io/, September 1, 2023.
  • 17. Markforged®, Design Guide for 3D Printing with Composites, https://static.markforged.com/downloads/CompositesDesignGuide.pdf, September 1, 2023.
  • 18. Lloyd Instruments, Lloyd LS5 Testing Machine, https://www.ametektest.com/products/material-testers/single-column-test-stands/ls-series, September 15, 2023.

EKLEMELİ İMALAT TEKNOLOJİSİYLE ÜRETİLMİŞ DÜZ VE KAVİSLİ KARBON FİBER TAKVİYELİ POLİMER MATRİSLİ KOMPOZİTLERİN KISA-KİRİŞ MUKAVEMETLERİNİN KARŞILAŞTIRILMASI

Year 2024, Volume: 8 Issue: 3, 352 - 360, 30.12.2024
https://doi.org/10.46519/ij3dptdi.1534538

Abstract

Bu çalışmada, eklemeli imalat teknolojisi kullanılarak üretilmiş düz ve kavisli polimer matrisli kompozitlerin kısa-kiriş mukavemetleri karşılaştırmalı olarak incelenmiştir. Sürekli filaman imalatı yöntemiyle üretilen tek yönlü sürekli karbon fiber takviyeli kompozit kısa-kirişler, geometrik olarak birbirinden farklı üç numune grubu olarak sınıflandırılmış ve üretimlerinin ardından üç-nokta eğilme testine tabi tutulmuştur. Kuvvet ve deplasman verileri test sırasında elde edilip, grafiksel olarak kuvvet-deplasman ve gerilme-deplasman eğrileriyle test gidişatı gözlemlenmiştir. Özgül mukavemet kavramı da çalışmaya dahil edilerek, kısa-kiriş mukavemeti karşılaştırmasına nesnellik kazandırılmıştır. Kavisli kompozit kısa-kiriş, eşdeğer özelliklere sahip düz bir kirişe göre az bir miktar daha düşük mukavemete sahipken, enerji depolama kapasitesinde artış meydana gelmiştir. Kavisli kirişin kalınlığı %50 oranında ve içerdiği karbon fiber oranı 2 katı arttırıldığındaysa, mukavemet değerini %19 arttırmış gözükse de özgül mukavemet değerinde %23 düşüş meydana getirmiştir. Çalışma, eriyik biriktirmeli modelleme temelli yeni bir teknik olan sürekli filaman imalatı teknolojisiyle üretilen kompozitlerin, henüz yeterli seviyede araştırılmamış mekanik performanslarını anlamaya yönelik katkı sunma, farkındalık yaratma ve gelecekteki mühendislik uygulamaları için yol gösterici nitelikte olma gayreti içindedir.

Thanks

Bu çalışmanın gerçekleşmesi sürecindeki katkılarından ötürü Queen’s University Belfast öğretim üyelerinden Doç. Dr. Zafer Kazancı’ya teşekkür ederim.

References

  • 1. Karagöz, İ., Danış Bekdemir, A. ve Tuna, Ö., “3B yazıcı teknolojilerindeki kullanılan yöntemler ve gelişmeler üzerine bir derleme”, Düzce Üniversitesi Bilim ve Teknoloji Dergisi, Cilt 9, Sayı 4, Sayfa 1186-1213, 2021.
  • 2. Altun, S. ve Sekban, B., “3B yazıcılar için cam fiber katkılı kompozit filament üretimi ve mekanik özellikleri”, Int. J. of 3D Printing Tech. Dig. Ind., Cilt 7, Sayı 1, Sayfa 64-67, 2023.
  • 3. Süsler, S. and Kazancı, Z., “Delamination strength comparison of additively manufactured composite curved beams using continuous fibers”, Polymers, Vol. 15, Issue 19, Pages 3928, 2023.
  • 4. Brunken, B., Barocio, E., Favaloro, A. and Kunc, V., “Fused filament fabrication of fiber-reinforced polymers: A review.”, Addit. Manuf., Vol. 21, Pages 1-16, 2018.
  • 5. ASTM International, “ASTM D2344/D2344M-22 Standard Test Method for Short-Beam Strength of Polymer Matrix Composite Materials and Their Laminates”, https://doi.org/10.1520/D2344_D2344M-22, April 2, 2024.
  • 6. Fijul Kabir, S.M., Mathur, K. and Seyam, A.F.M., “A critical review on 3D printed continuous fiber-reinforced composites: History, mechanism, materials and properties”, Compos. Struct., Vol. 232, Pages 111476, 2020.
  • 7. Handwerker, M., Wellnitz, J. and Marzbani, H., “Review of mechanical properties of and optimisation methods for continuous fibre-reinforced thermoplastic parts manufactured by fused deposition modelling”, Prog. Addit. Manuf., Vol. 6, Pages 663-677, 2021.
  • 8. Jamal, M.A., Shah, O.R., Ghafoor, U., Qureshi, Y. and Bhutta, M.R, “Additive manufacturing of continuous fiber-reinforced polymer composites via fused deposition modelling: A comprehensive review”, Polymers, Vol. 16, Pages 1622, 2024.
  • 9. Yang, C., Tian, X., Liu, T., Cao, Y. and Li, D., “3D printing for continuous fiber reinforced thermoplastic composites: Mechanism and performance”, Rapid Prototyp. J., Vol. 23, Pages 209-215, 2017.
  • 10. Caminero, M.A., Chacón, J.M., García-Moreno, I. and Reverte, J.M., “Interlaminar bonding performance of 3D printed continuous fibre reinforced thermoplastic composites using fused deposition modelling”, Polym. Test., Vol. 68, Pages 415-423, 2018.
  • 11. Iragi, M., Pascual-González, C., Esnaola, A., Lopes, C.S., and Aretxabaleta, L., “Ply and interlaminar behaviours of 3D printed continuous carbon fibre-reinforced thermoplastic laminates; effects of processing conditions and microstructure”, Addit. Manuf., Vol. 30, Pages 100884, 2019.
  • 12. Yavas, D., Zhang, Z., Liu, Q. and Wu, D., “Interlaminar shear behavior of continuous and short carbon fiber reinforced polymer composites fabricated by additive manufacturing”, Compos. Part B Eng., Vol. 204, Pages 108460, 2021.
  • 13. Santos, J.D., Fernández, A., Ripoll, L. and Blanco, N., “Experimental characterization and analysis of the in-plane elastic properties and interlaminar fracture toughness of a 3D-printed continuous carbon fiber-reinforced composite”, Polymers, Vol. 14, Pages 506, 2022.
  • 14. Markforged®, “Mark Two 3D Printer”, https://markforged.com/3d-printers/mark-two, September 1, 2023.
  • 15. Markforged®, Carbon Fiber, https://markforged.com/materials/continuous-fibers/continuous-carbon-fiber, September 25, 2024.
  • 16. Markforged®, “Eiger Software”, https://www.eiger.io/, September 1, 2023.
  • 17. Markforged®, Design Guide for 3D Printing with Composites, https://static.markforged.com/downloads/CompositesDesignGuide.pdf, September 1, 2023.
  • 18. Lloyd Instruments, Lloyd LS5 Testing Machine, https://www.ametektest.com/products/material-testers/single-column-test-stands/ls-series, September 15, 2023.
There are 18 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering (Other)
Journal Section Research Article
Authors

Sedat Süsler 0000-0002-5947-8231

Publication Date December 30, 2024
Submission Date August 16, 2024
Acceptance Date October 1, 2024
Published in Issue Year 2024 Volume: 8 Issue: 3

Cite

APA Süsler, S. (2024). EKLEMELİ İMALAT TEKNOLOJİSİYLE ÜRETİLMİŞ DÜZ VE KAVİSLİ KARBON FİBER TAKVİYELİ POLİMER MATRİSLİ KOMPOZİTLERİN KISA-KİRİŞ MUKAVEMETLERİNİN KARŞILAŞTIRILMASI. International Journal of 3D Printing Technologies and Digital Industry, 8(3), 352-360. https://doi.org/10.46519/ij3dptdi.1534538
AMA Süsler S. EKLEMELİ İMALAT TEKNOLOJİSİYLE ÜRETİLMİŞ DÜZ VE KAVİSLİ KARBON FİBER TAKVİYELİ POLİMER MATRİSLİ KOMPOZİTLERİN KISA-KİRİŞ MUKAVEMETLERİNİN KARŞILAŞTIRILMASI. IJ3DPTDI. December 2024;8(3):352-360. doi:10.46519/ij3dptdi.1534538
Chicago Süsler, Sedat. “EKLEMELİ İMALAT TEKNOLOJİSİYLE ÜRETİLMİŞ DÜZ VE KAVİSLİ KARBON FİBER TAKVİYELİ POLİMER MATRİSLİ KOMPOZİTLERİN KISA-KİRİŞ MUKAVEMETLERİNİN KARŞILAŞTIRILMASI”. International Journal of 3D Printing Technologies and Digital Industry 8, no. 3 (December 2024): 352-60. https://doi.org/10.46519/ij3dptdi.1534538.
EndNote Süsler S (December 1, 2024) EKLEMELİ İMALAT TEKNOLOJİSİYLE ÜRETİLMİŞ DÜZ VE KAVİSLİ KARBON FİBER TAKVİYELİ POLİMER MATRİSLİ KOMPOZİTLERİN KISA-KİRİŞ MUKAVEMETLERİNİN KARŞILAŞTIRILMASI. International Journal of 3D Printing Technologies and Digital Industry 8 3 352–360.
IEEE S. Süsler, “EKLEMELİ İMALAT TEKNOLOJİSİYLE ÜRETİLMİŞ DÜZ VE KAVİSLİ KARBON FİBER TAKVİYELİ POLİMER MATRİSLİ KOMPOZİTLERİN KISA-KİRİŞ MUKAVEMETLERİNİN KARŞILAŞTIRILMASI”, IJ3DPTDI, vol. 8, no. 3, pp. 352–360, 2024, doi: 10.46519/ij3dptdi.1534538.
ISNAD Süsler, Sedat. “EKLEMELİ İMALAT TEKNOLOJİSİYLE ÜRETİLMİŞ DÜZ VE KAVİSLİ KARBON FİBER TAKVİYELİ POLİMER MATRİSLİ KOMPOZİTLERİN KISA-KİRİŞ MUKAVEMETLERİNİN KARŞILAŞTIRILMASI”. International Journal of 3D Printing Technologies and Digital Industry 8/3 (December 2024), 352-360. https://doi.org/10.46519/ij3dptdi.1534538.
JAMA Süsler S. EKLEMELİ İMALAT TEKNOLOJİSİYLE ÜRETİLMİŞ DÜZ VE KAVİSLİ KARBON FİBER TAKVİYELİ POLİMER MATRİSLİ KOMPOZİTLERİN KISA-KİRİŞ MUKAVEMETLERİNİN KARŞILAŞTIRILMASI. IJ3DPTDI. 2024;8:352–360.
MLA Süsler, Sedat. “EKLEMELİ İMALAT TEKNOLOJİSİYLE ÜRETİLMİŞ DÜZ VE KAVİSLİ KARBON FİBER TAKVİYELİ POLİMER MATRİSLİ KOMPOZİTLERİN KISA-KİRİŞ MUKAVEMETLERİNİN KARŞILAŞTIRILMASI”. International Journal of 3D Printing Technologies and Digital Industry, vol. 8, no. 3, 2024, pp. 352-60, doi:10.46519/ij3dptdi.1534538.
Vancouver Süsler S. EKLEMELİ İMALAT TEKNOLOJİSİYLE ÜRETİLMİŞ DÜZ VE KAVİSLİ KARBON FİBER TAKVİYELİ POLİMER MATRİSLİ KOMPOZİTLERİN KISA-KİRİŞ MUKAVEMETLERİNİN KARŞILAŞTIRILMASI. IJ3DPTDI. 2024;8(3):352-60.

download

International Journal of 3D Printing Technologies and Digital Industry is lisenced under Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı