Research Article
BibTex RIS Cite
Year 2024, Volume: 13 Issue: 2, 73 - 83, 30.06.2024
https://doi.org/10.18245/ijaet.1366246

Abstract

References

  • Abdullah, I. S., Khalid, A., Jaat, N., Nursal, R. S., Koten, H., & Karagoz, Y. (2021). A study of ignition delay, combustion process and emissions in a high ambient temperature of diesel combustion. Fuel, 297, 120706.
  • Duan, X., Lai, M. C., Jansons, M., Guo, G., & Liu, J. (2021). A review of controlling strategies of the ignition timing and combustion phase in homogeneous charge compression ignition (HCCI) engine. Fuel, 285, 119142.
  • Elbanna, A. M., Xiaobei, C., Can, Y., Elkelawy, M., Bastawissi, H. A. E., & Panchal, H. (2022). Fuel reactivity controlled compression ignition engine and potential strategies to extend the engine operating range: A comprehensive review. Energy Conversion and Management: X, 13, 100133.
  • Emiroğlu, A. O., & Şen, M. (2018). Combustion, performance and emission characteristics of various alcohol blends in a single cylinder diesel engine. Fuel, 212, 34-40.
  • Farikhah, I., Elsharkawy, E. A., Saad, A. S., & Atia, T. (2023). Numerical Study on the Effect of Stack Radii on the Low Onset Heating Temperature and Efficiency of 4-Stage Thermoacoustic Engine. Arabian Journal for Science and Engineering, 48(3), 2769-2778.
  • Han, Z., Henein, N., Nitu, B., & Bryzik, W. (2001). Diesel engine cold start combustion instability and control strategy (No. 2001-01-1237). SAE Technical Paper.
  • Henein, N. A., Zahdeh, A. R., Yassine, M. K., & Bryzik, W. (1992). Diesel engine cold starting: Combustion instability. 920005. https://doi.org/10.4271/920005
  • Hmida, A., Hammami, A., Chaari, F., Amar, M. B., & Haddar, M. (2021). Effects of misfire on the dynamic behavior of gasoline Engine Crankshafts. Engineering Failure Analysis, 121, 105149.
  • Hwang, J., Park, Y., Kim, K., Lee, J., & Bae, C. (2017). Improvement of diesel combustion with multiple injections at cold condition in a constant volume combustion chamber. Fuel, 197, 528–540. https://doi.org/10.1016/j.fuel.2017.02.049
  • Kawabe, T., Inoue, K., Mori, K., Ishikawa, T., Kobashi, Y., Shibata, G., & Ogawa, H. (2023). Mechanism of the reduction in afterburning and thermal efficiency improvement with highly oxygenated fuels in diesel combustion. International Journal of Engine Research, 24(10), 4362-4372.
  • Larmi, M. (2021). Effect of pilot fuel properties on lean dual-fuel combustion and emission characteristics in a heavy-duty engine. Applied Energy, 282, 116134.
  • Liang, F., Diming, L., Zhiyuan, H., Piqiang, T., Yunhua, Z., & Rong, Y. (2022). Study on the First-Firing-Cycle combustion characteristics of high-altitude and low-temperature environments during diesel engine cold start. Fuel, 322, 124186.
  • Lodi, F., Zare, A., Arora, P., Stevanovic, S., Jafari, M., Ristovski, Z., ... & Bodisco, T. (2020). Engine performance and emissions analysis in a cold, intermediate and hot start diesel engine. Applied Sciences, 10(11), 3839.
  • Lu, K., Qiu, H., Chen, Z., Shi, L., & Deng, K. (2023). Environmental adaptability method for improving the cold start performance of the diesel engine based on pilot injection strategy. Energy, 281, 128215.
  • MacMillan, D., La Rocca, A., Shayler, P. J., Murphy, M., & Pegg, I. G. (2009). The effect of reducing compression ratio on the work output and heat release characteristics of a DI diesel under cold start conditions. SAE International Journal of Engines, 1(1), 794–803.
  • Moradi, J., Gharehghani, A., & Mirsalim, M. (2020). Numerical investigation on the effect of oxygen in combustion characteristics and to extend low load operating range of a natural-gas HCCI engine. Applied Energy, 276, 11551
  • Omanovic, A., Zsiga, N., Soltic, P., & Onder, C. (2021). Increased internal combustion engine efficiency with optimized valve timings in extended stroke operation. Energies, 14(10), 2750.
  • Park, H., Bae, C., & Ha, C. (2019). A comprehensive analysis of multiple injection strategies for improving diesel combustion process under cold-start conditions. Fuel, 255, 115762.
  • Rokni, H. B., Moore, J. D., & Gavaises, M. (2021). Entropy-scaling based pseudo-component viscosity and thermal conductivity models for hydrocarbon mixtures and fuels containing iso-alkanes and two-ring saturates. Fuel, 283, 118877.
  • Sener, R., Yangaz, M. U., & Gul, M. Z. (2020). Effects of injection strategy and combustion chamber modification on a single-cylinder diesel engine. Fuel, 266, 117122.
  • Sezer, İ. (2019). A review study on the using of diethyl ether in diesel engines: Effects on CO emissions. International Journal of Automotive Science and Technology, 3(1), 6-20.
  • Shehata, M. M. A. O. (2019). New Fuels, Flame quenching and DDT (Doctoral dissertation, University of Leeds).
  • Shim, E., Park, H., & Bae, C. (2020). Comparisons of advanced combustion technologies (HCCI, PCCI, and dual-fuel PCCI) on engine performance and emission characteristics in a heavy-duty diesel engine. Fuel, 262, 116436.
  • Soltic, P., Hilfiker, T., Wright, Y., Hardy, G., Fröhlich, B., & Klein, D. (2024). The potential of dimethyl ether (DME) to meet current and future emissions standards in heavy-duty compression-ignition engines. Fuel, 355, 129357.
  • Zhang, Z., Liu, H., Yue, Z., Wu, Y., Kong, X., Zheng, Z., & Yao, M. (2022). Effects of multiple injection strategies on heavy-duty diesel energy distributions and emissions under high peak combustion pressures. Frontiers in Energy Research, 10, 857077.

A comprehensive investigation of injection strategies for improving diesel engine combustion under cold start development

Year 2024, Volume: 13 Issue: 2, 73 - 83, 30.06.2024
https://doi.org/10.18245/ijaet.1366246

Abstract

Starting at cold temperatures ranging from -30°C to 0°C has been a concern for all diesel engines, especially for future diesel engines that need to meet tighter carbon emission standards. Combustion instability and increasing smoke emissions are rising concerns during the cold start of diesel engines. Cold ambient conditions cause long cranking periods or complete misfire events in diesel engines; therefore, they produce a large proportion of pollutants within the cylinder due to incomplete combustion. In this study, a comprehensive investigation of multiple injection strategies was conducted under cold-start conditions to identify an optimal injection strategy that improves diesel combustion stability, cold-startup performance, and decreases white smoke emissions at cold ambient temperatures. This study found that cold start-up performance can be improved by eliminating misfire and lowering time to clean up white smoke with a three-injection strategy (two pilots and one main injection, simply named Pilot-Pilot-Main).

References

  • Abdullah, I. S., Khalid, A., Jaat, N., Nursal, R. S., Koten, H., & Karagoz, Y. (2021). A study of ignition delay, combustion process and emissions in a high ambient temperature of diesel combustion. Fuel, 297, 120706.
  • Duan, X., Lai, M. C., Jansons, M., Guo, G., & Liu, J. (2021). A review of controlling strategies of the ignition timing and combustion phase in homogeneous charge compression ignition (HCCI) engine. Fuel, 285, 119142.
  • Elbanna, A. M., Xiaobei, C., Can, Y., Elkelawy, M., Bastawissi, H. A. E., & Panchal, H. (2022). Fuel reactivity controlled compression ignition engine and potential strategies to extend the engine operating range: A comprehensive review. Energy Conversion and Management: X, 13, 100133.
  • Emiroğlu, A. O., & Şen, M. (2018). Combustion, performance and emission characteristics of various alcohol blends in a single cylinder diesel engine. Fuel, 212, 34-40.
  • Farikhah, I., Elsharkawy, E. A., Saad, A. S., & Atia, T. (2023). Numerical Study on the Effect of Stack Radii on the Low Onset Heating Temperature and Efficiency of 4-Stage Thermoacoustic Engine. Arabian Journal for Science and Engineering, 48(3), 2769-2778.
  • Han, Z., Henein, N., Nitu, B., & Bryzik, W. (2001). Diesel engine cold start combustion instability and control strategy (No. 2001-01-1237). SAE Technical Paper.
  • Henein, N. A., Zahdeh, A. R., Yassine, M. K., & Bryzik, W. (1992). Diesel engine cold starting: Combustion instability. 920005. https://doi.org/10.4271/920005
  • Hmida, A., Hammami, A., Chaari, F., Amar, M. B., & Haddar, M. (2021). Effects of misfire on the dynamic behavior of gasoline Engine Crankshafts. Engineering Failure Analysis, 121, 105149.
  • Hwang, J., Park, Y., Kim, K., Lee, J., & Bae, C. (2017). Improvement of diesel combustion with multiple injections at cold condition in a constant volume combustion chamber. Fuel, 197, 528–540. https://doi.org/10.1016/j.fuel.2017.02.049
  • Kawabe, T., Inoue, K., Mori, K., Ishikawa, T., Kobashi, Y., Shibata, G., & Ogawa, H. (2023). Mechanism of the reduction in afterburning and thermal efficiency improvement with highly oxygenated fuels in diesel combustion. International Journal of Engine Research, 24(10), 4362-4372.
  • Larmi, M. (2021). Effect of pilot fuel properties on lean dual-fuel combustion and emission characteristics in a heavy-duty engine. Applied Energy, 282, 116134.
  • Liang, F., Diming, L., Zhiyuan, H., Piqiang, T., Yunhua, Z., & Rong, Y. (2022). Study on the First-Firing-Cycle combustion characteristics of high-altitude and low-temperature environments during diesel engine cold start. Fuel, 322, 124186.
  • Lodi, F., Zare, A., Arora, P., Stevanovic, S., Jafari, M., Ristovski, Z., ... & Bodisco, T. (2020). Engine performance and emissions analysis in a cold, intermediate and hot start diesel engine. Applied Sciences, 10(11), 3839.
  • Lu, K., Qiu, H., Chen, Z., Shi, L., & Deng, K. (2023). Environmental adaptability method for improving the cold start performance of the diesel engine based on pilot injection strategy. Energy, 281, 128215.
  • MacMillan, D., La Rocca, A., Shayler, P. J., Murphy, M., & Pegg, I. G. (2009). The effect of reducing compression ratio on the work output and heat release characteristics of a DI diesel under cold start conditions. SAE International Journal of Engines, 1(1), 794–803.
  • Moradi, J., Gharehghani, A., & Mirsalim, M. (2020). Numerical investigation on the effect of oxygen in combustion characteristics and to extend low load operating range of a natural-gas HCCI engine. Applied Energy, 276, 11551
  • Omanovic, A., Zsiga, N., Soltic, P., & Onder, C. (2021). Increased internal combustion engine efficiency with optimized valve timings in extended stroke operation. Energies, 14(10), 2750.
  • Park, H., Bae, C., & Ha, C. (2019). A comprehensive analysis of multiple injection strategies for improving diesel combustion process under cold-start conditions. Fuel, 255, 115762.
  • Rokni, H. B., Moore, J. D., & Gavaises, M. (2021). Entropy-scaling based pseudo-component viscosity and thermal conductivity models for hydrocarbon mixtures and fuels containing iso-alkanes and two-ring saturates. Fuel, 283, 118877.
  • Sener, R., Yangaz, M. U., & Gul, M. Z. (2020). Effects of injection strategy and combustion chamber modification on a single-cylinder diesel engine. Fuel, 266, 117122.
  • Sezer, İ. (2019). A review study on the using of diethyl ether in diesel engines: Effects on CO emissions. International Journal of Automotive Science and Technology, 3(1), 6-20.
  • Shehata, M. M. A. O. (2019). New Fuels, Flame quenching and DDT (Doctoral dissertation, University of Leeds).
  • Shim, E., Park, H., & Bae, C. (2020). Comparisons of advanced combustion technologies (HCCI, PCCI, and dual-fuel PCCI) on engine performance and emission characteristics in a heavy-duty diesel engine. Fuel, 262, 116436.
  • Soltic, P., Hilfiker, T., Wright, Y., Hardy, G., Fröhlich, B., & Klein, D. (2024). The potential of dimethyl ether (DME) to meet current and future emissions standards in heavy-duty compression-ignition engines. Fuel, 355, 129357.
  • Zhang, Z., Liu, H., Yue, Z., Wu, Y., Kong, X., Zheng, Z., & Yao, M. (2022). Effects of multiple injection strategies on heavy-duty diesel energy distributions and emissions under high peak combustion pressures. Frontiers in Energy Research, 10, 857077.
There are 25 citations in total.

Details

Primary Language English
Subjects Automotive Combustion and Fuel Engineering
Journal Section Article
Authors

Balkrishna Kamble This is me 0009-0002-1764-0883

Rukmini Srikant Revuru 0000-0003-0528-3495

Zhe Zhang This is me 0000-0001-8905-5435

Publication Date June 30, 2024
Submission Date October 2, 2023
Published in Issue Year 2024 Volume: 13 Issue: 2

Cite

APA Kamble, B., Revuru, R. S., & Zhang, Z. (2024). A comprehensive investigation of injection strategies for improving diesel engine combustion under cold start development. International Journal of Automotive Engineering and Technologies, 13(2), 73-83. https://doi.org/10.18245/ijaet.1366246
AMA Kamble B, Revuru RS, Zhang Z. A comprehensive investigation of injection strategies for improving diesel engine combustion under cold start development. International Journal of Automotive Engineering and Technologies. June 2024;13(2):73-83. doi:10.18245/ijaet.1366246
Chicago Kamble, Balkrishna, Rukmini Srikant Revuru, and Zhe Zhang. “A Comprehensive Investigation of Injection Strategies for Improving Diesel Engine Combustion under Cold Start Development”. International Journal of Automotive Engineering and Technologies 13, no. 2 (June 2024): 73-83. https://doi.org/10.18245/ijaet.1366246.
EndNote Kamble B, Revuru RS, Zhang Z (June 1, 2024) A comprehensive investigation of injection strategies for improving diesel engine combustion under cold start development. International Journal of Automotive Engineering and Technologies 13 2 73–83.
IEEE B. Kamble, R. S. Revuru, and Z. Zhang, “A comprehensive investigation of injection strategies for improving diesel engine combustion under cold start development”, International Journal of Automotive Engineering and Technologies, vol. 13, no. 2, pp. 73–83, 2024, doi: 10.18245/ijaet.1366246.
ISNAD Kamble, Balkrishna et al. “A Comprehensive Investigation of Injection Strategies for Improving Diesel Engine Combustion under Cold Start Development”. International Journal of Automotive Engineering and Technologies 13/2 (June 2024), 73-83. https://doi.org/10.18245/ijaet.1366246.
JAMA Kamble B, Revuru RS, Zhang Z. A comprehensive investigation of injection strategies for improving diesel engine combustion under cold start development. International Journal of Automotive Engineering and Technologies. 2024;13:73–83.
MLA Kamble, Balkrishna et al. “A Comprehensive Investigation of Injection Strategies for Improving Diesel Engine Combustion under Cold Start Development”. International Journal of Automotive Engineering and Technologies, vol. 13, no. 2, 2024, pp. 73-83, doi:10.18245/ijaet.1366246.
Vancouver Kamble B, Revuru RS, Zhang Z. A comprehensive investigation of injection strategies for improving diesel engine combustion under cold start development. International Journal of Automotive Engineering and Technologies. 2024;13(2):73-8.