Research Article
BibTex RIS Cite

Evaluation of tomato genotypes for high temperature tolerance using certain reproductive and fruit traits by factor analysis

Year 2020, Volume: 4 Issue: 2, 190 - 196, 30.12.2020

Abstract

High atmosphere temperature is the most significant environmental factor and its negative impact on plant growth and productivity causes large losses in agricultural production. Fourteen tomato genotypes (G1;U64-16, G2;U4-10, G3;U2-29, G4;U117-2 G5; CLN1621L, G6; BL1176, G7; CLN2418A, G8; BL1175, G9; BL1173, G10; CLN2001A, G11; CLN2413R, G12; CL5915-93D4-1-0-3, G13; BL1174, and G14; CLN2498E) were evaluated at three temperature conditions. Three field experiment was carried out at optimum (OT, 28/21°C day/night), moderate high temperature (MHT, 32/22°C day/night) and high temperature (HT, 37/27°C day/night) conditions. Fruit set rate (Fr.S), number of produced pollen grains per flower (P.Pr), number of released pollen per flower (P.R), percentage of viable pollen (P.Via), in vitro pollen germination (P.Ger), number of seed per fruit (S./Fr), aborted fruit rate (A.Fr), fruit weight (Fr.We), fruit length (Fr.Len), fruit diameter (Fr.Dia) and seed germination (S.Ger) were scored. The temperature damage threshold was determined for the mentioned properties. The temperature slightly over the OT reduced the pollen characteristics, Fr.S and S./Fr.The results revealed that the P.R, P.Pr and P.Ger were the most important factors to determine the fruit set under for the temperatures above the optimum and could be used in breeding programs aiming to obtain better fruit set under HT. The P.Pr and P.R were readily affected by the increase in temperature compared to P.Ger and P.Via. The damage threshold temperature was 43.9 °C for P.Ger and 45.9 °C for P.Via.

Supporting Institution

Harran Üniversitesi BAP komisyonu

Project Number

606

Thanks

Tohum destekleri için Asian Vegetable Research and Development Center'e teşekkür ederiz.

References

  • Abdul-Baki, A.A. (1991). Tolerance of tomato cultivars and selected germplasm to heat stres. J. Amer. Soc. Hort. Sci., 116(6):1113-1116.
  • Anderson T.W. (1984). An introduction to multivariate statistical analysis, Second Edition. John Wiley & Sons.
  • Arnell, N.W. (2000). Thresholds and response to climate change forcing: the water sector. Climatic Change 46: 305–316. http://www.springerlink.com/content/qm6454945128l177/fulltext.pdf.
  • Ayenan, M.A.T., A. Danquah, P. Hanson, C. Ampomah-Dwamena, F.A.K. Sodedji., I.K. Asante and E.Y. Danquah. (2019). Accelerating breeding for heat tolerance in tomato (Solanum lycopersicum L.): An Integrated Approach. Agronomy. 9: 720; https://doi.org/10.3390/agronomy9110720.
  • Bhardwaj M.L. (2012). effect of climate change on vegetable production in india. in vegetable production under changing climate scenario. Centre of Advanced Faculty Training in Horticulture. Department of Vegetable Sci.
  • Camejo, D., P. Rodríguez, M.A. Morales, J.M. Dell'Amico, A. Torrecillas, J.J. Alarcón. (2005). High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. J. Plant Physiol. 162, 281–289.
  • Golam, F., Z.H.Prodhan, A. Nezhadahmadi, M. Rahman. (2012). Heat tolerance in tomato. Life Science Journal 9(4); 1936-1950.
  • Naranjo Di Paola, R.D. S.Otaiza, A.C. Saragusti, V. Baroni, V. Carranza Adel, I.E. Peralta, E.M. Valle, F. Carrari and R. Asis. (2016). Hydrophilic antioxidants from Andean tomato landraces assessed by their bioactivities in vitro and in vivo. Food Chem 206: 146-155.
  • Driedonks N, A.M. Wolters, H. Huber, B.G.J. De, W. Vriezen, C. Mariani, I. Rieu. (2018). Exploring the natural variation for reproductive thermos tolerance in wild tomato species. Euphytica (2018) 214:67. https://doi.org/10.1007/s10681-018-2150-2
  • Eti, S., (1991). Bazı meyve tür ve çeşitlerinde değişik in vitro testler yardımıyla çiçek tozu canlılık ve çimlenme yeteneklerinin belirlenmesi. Cukurova Universitesi, Ziraat Fakultesi Dergisi: 69:80-91.
  • Hazra P., H.A. Samsul, D. Sikder and K.V. Peter. (2007). Breeding tomato (Lycopersicon esculentum Mill) resistant to high temperature stress. International Journal of Plant Breeding 1: 31-40.
  • IPCC, 2018: Global Warming of 1.5 °C. An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [M-Delmotte, V., P. Zhai, et al. (eds.)]. In Press.
  • Jones, B.J. (2008). Tomato plant culture: In the Field, Greenhouse, and Home Garden, 2nd ed.; CRC Press: Boca Raton, FL, USA, Volume 136, ISBN 9780849373954.
  • Joshi, B.K., R.G. Gardner and D.R. Pantheegge. (2011). Biplot Analysis of tomato F1 hybrids evaluated across years for marketable fruit yield. Journal of Crop Improvement, 25: 488–496, ISSN: 1542-7528 print/1542-7536 online https://doi.org/10.1080/15427528.2011.587138.
  • Kenny, G.J., R.A. Warrick, B.D. Campbell, G.C Sims, M. Camilleri, P.D. Jamieson, N.D. Mitchell, H.G. Mcpherson, and M.J. Salinger. (2000). Investigating climate change impacts and thresholds: an application of the CLIMPACTS integrated assessment model for New Zealand agriculture, Climatic Change, 46: 91-113. http://www.springerlink.com/content/t262145017509727/fulltext.pdf
  • Peet, M.M., D.H. Willits and R.G. Gardner. (1997). Responce of ovule development and post-pollen production processes in male-sterile tomatoes to chronic, sub-acute high temperature stress. J. of Experiental Botany, 48: 101-111.
  • Phama, D., K. Hoshikawa, S. Fujitaa, S. Fukumotoa, T. Hiraib, Y. Shinozakib, H. Ezura. (2020). A tomato heat-tolerant mutant shows improved pollen fertility and fruit setting under long-term ambient high temperature. Environmental and Experimental Botany 178: 104150
  • Pressman E., D. Harel, E. Zamski, R. Shaked, L. Althan, K. Rosenfeld and N. Firon. (2006). The effect of high temperatures on the expression and activity of sucrose cleaving enzymes during tomato (Lycopersicon esculentum) anther development. J. Hort. Sci. Biotech. 81, 341–348. https://doi.org/10.1080/14620316.2006. 11512071.
  • Pressman, E., M.M. Peet, and D.M. Pharr. (2002). The effect of heat stress on tomato pollen characteristics is associated with changes in carbohydrate concentration in the developing anthers. Ann. Bot. 90, 631–636. https://doi.org/10.1093/aob/mcf240
  • Raja, M.M.; Vijayalakshmi, G.; Naik, M.L.; Basha, P.O.; Sergeant, K.; Hausman, J.F.; Khan, P.S.S.V. (2019). Pollen development and function under heat stress: from effects to responses. Acta Physiol Plant 41, 47 https://doi.org/10.1007/s11738-019-2835-8.
  • Sato, S., Kamiyama, M., T. Iwata, N. Makita, H. Furukawa, and H. Ikeda.( 2006). Moderate increase of mean daily temperature adversely affects fruit set of Lycopersicon esculentum by disrupting specific physiological process in male reproductive development. Annals of Botany, 10:1093-1098.
  • Sharma S.P., D.I. Leskovar, K.M. Crosby, A.M.H. Ibrahim. (2020). GGE biplot analysis of genotype-by-environment interactions for melon fruit yield and quality traits. HortScience, 55(4):533–542. https://doi.org/10.21273/HORTSCI14760-19
  • Soylu,M.K. and N. Comlekcioglu. (2009). The effects of high temperature on pollen grain characteristics iın tomato (Lycopersicon esculentum M.). J.Agric.Fac.HR.U , 35- 42 pp.
  • Thamburaj S, N Singh. (2011). Textbook of vegetables, tuber crops and spices. New Delhi: Indian Council of Agricultural Research.
  • Wahid A., S. Gelani, M. Ashraf, M.R. Foolad. (2007). Heat tolerance in plants: An overview. Environmental and Experimental Botany. 61: 199-223.
  • Xu, J., M. Wolters-Ars, C. Mariani, H. Huber and I. Rieu. (2017). Heat stress affects vegetative and reproductive performance and trait correlations in tomato (Solanum lycopersicum). Euphytica, 213:156.
Year 2020, Volume: 4 Issue: 2, 190 - 196, 30.12.2020

Abstract

Project Number

606

References

  • Abdul-Baki, A.A. (1991). Tolerance of tomato cultivars and selected germplasm to heat stres. J. Amer. Soc. Hort. Sci., 116(6):1113-1116.
  • Anderson T.W. (1984). An introduction to multivariate statistical analysis, Second Edition. John Wiley & Sons.
  • Arnell, N.W. (2000). Thresholds and response to climate change forcing: the water sector. Climatic Change 46: 305–316. http://www.springerlink.com/content/qm6454945128l177/fulltext.pdf.
  • Ayenan, M.A.T., A. Danquah, P. Hanson, C. Ampomah-Dwamena, F.A.K. Sodedji., I.K. Asante and E.Y. Danquah. (2019). Accelerating breeding for heat tolerance in tomato (Solanum lycopersicum L.): An Integrated Approach. Agronomy. 9: 720; https://doi.org/10.3390/agronomy9110720.
  • Bhardwaj M.L. (2012). effect of climate change on vegetable production in india. in vegetable production under changing climate scenario. Centre of Advanced Faculty Training in Horticulture. Department of Vegetable Sci.
  • Camejo, D., P. Rodríguez, M.A. Morales, J.M. Dell'Amico, A. Torrecillas, J.J. Alarcón. (2005). High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. J. Plant Physiol. 162, 281–289.
  • Golam, F., Z.H.Prodhan, A. Nezhadahmadi, M. Rahman. (2012). Heat tolerance in tomato. Life Science Journal 9(4); 1936-1950.
  • Naranjo Di Paola, R.D. S.Otaiza, A.C. Saragusti, V. Baroni, V. Carranza Adel, I.E. Peralta, E.M. Valle, F. Carrari and R. Asis. (2016). Hydrophilic antioxidants from Andean tomato landraces assessed by their bioactivities in vitro and in vivo. Food Chem 206: 146-155.
  • Driedonks N, A.M. Wolters, H. Huber, B.G.J. De, W. Vriezen, C. Mariani, I. Rieu. (2018). Exploring the natural variation for reproductive thermos tolerance in wild tomato species. Euphytica (2018) 214:67. https://doi.org/10.1007/s10681-018-2150-2
  • Eti, S., (1991). Bazı meyve tür ve çeşitlerinde değişik in vitro testler yardımıyla çiçek tozu canlılık ve çimlenme yeteneklerinin belirlenmesi. Cukurova Universitesi, Ziraat Fakultesi Dergisi: 69:80-91.
  • Hazra P., H.A. Samsul, D. Sikder and K.V. Peter. (2007). Breeding tomato (Lycopersicon esculentum Mill) resistant to high temperature stress. International Journal of Plant Breeding 1: 31-40.
  • IPCC, 2018: Global Warming of 1.5 °C. An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [M-Delmotte, V., P. Zhai, et al. (eds.)]. In Press.
  • Jones, B.J. (2008). Tomato plant culture: In the Field, Greenhouse, and Home Garden, 2nd ed.; CRC Press: Boca Raton, FL, USA, Volume 136, ISBN 9780849373954.
  • Joshi, B.K., R.G. Gardner and D.R. Pantheegge. (2011). Biplot Analysis of tomato F1 hybrids evaluated across years for marketable fruit yield. Journal of Crop Improvement, 25: 488–496, ISSN: 1542-7528 print/1542-7536 online https://doi.org/10.1080/15427528.2011.587138.
  • Kenny, G.J., R.A. Warrick, B.D. Campbell, G.C Sims, M. Camilleri, P.D. Jamieson, N.D. Mitchell, H.G. Mcpherson, and M.J. Salinger. (2000). Investigating climate change impacts and thresholds: an application of the CLIMPACTS integrated assessment model for New Zealand agriculture, Climatic Change, 46: 91-113. http://www.springerlink.com/content/t262145017509727/fulltext.pdf
  • Peet, M.M., D.H. Willits and R.G. Gardner. (1997). Responce of ovule development and post-pollen production processes in male-sterile tomatoes to chronic, sub-acute high temperature stress. J. of Experiental Botany, 48: 101-111.
  • Phama, D., K. Hoshikawa, S. Fujitaa, S. Fukumotoa, T. Hiraib, Y. Shinozakib, H. Ezura. (2020). A tomato heat-tolerant mutant shows improved pollen fertility and fruit setting under long-term ambient high temperature. Environmental and Experimental Botany 178: 104150
  • Pressman E., D. Harel, E. Zamski, R. Shaked, L. Althan, K. Rosenfeld and N. Firon. (2006). The effect of high temperatures on the expression and activity of sucrose cleaving enzymes during tomato (Lycopersicon esculentum) anther development. J. Hort. Sci. Biotech. 81, 341–348. https://doi.org/10.1080/14620316.2006. 11512071.
  • Pressman, E., M.M. Peet, and D.M. Pharr. (2002). The effect of heat stress on tomato pollen characteristics is associated with changes in carbohydrate concentration in the developing anthers. Ann. Bot. 90, 631–636. https://doi.org/10.1093/aob/mcf240
  • Raja, M.M.; Vijayalakshmi, G.; Naik, M.L.; Basha, P.O.; Sergeant, K.; Hausman, J.F.; Khan, P.S.S.V. (2019). Pollen development and function under heat stress: from effects to responses. Acta Physiol Plant 41, 47 https://doi.org/10.1007/s11738-019-2835-8.
  • Sato, S., Kamiyama, M., T. Iwata, N. Makita, H. Furukawa, and H. Ikeda.( 2006). Moderate increase of mean daily temperature adversely affects fruit set of Lycopersicon esculentum by disrupting specific physiological process in male reproductive development. Annals of Botany, 10:1093-1098.
  • Sharma S.P., D.I. Leskovar, K.M. Crosby, A.M.H. Ibrahim. (2020). GGE biplot analysis of genotype-by-environment interactions for melon fruit yield and quality traits. HortScience, 55(4):533–542. https://doi.org/10.21273/HORTSCI14760-19
  • Soylu,M.K. and N. Comlekcioglu. (2009). The effects of high temperature on pollen grain characteristics iın tomato (Lycopersicon esculentum M.). J.Agric.Fac.HR.U , 35- 42 pp.
  • Thamburaj S, N Singh. (2011). Textbook of vegetables, tuber crops and spices. New Delhi: Indian Council of Agricultural Research.
  • Wahid A., S. Gelani, M. Ashraf, M.R. Foolad. (2007). Heat tolerance in plants: An overview. Environmental and Experimental Botany. 61: 199-223.
  • Xu, J., M. Wolters-Ars, C. Mariani, H. Huber and I. Rieu. (2017). Heat stress affects vegetative and reproductive performance and trait correlations in tomato (Solanum lycopersicum). Euphytica, 213:156.
There are 26 citations in total.

Details

Primary Language English
Subjects Agricultural, Veterinary and Food Sciences
Journal Section Original Papers
Authors

Nuray Çömlekçioğlu 0000-0001-7189-613X

Mustafa Kemal Soylu 0000-0003-3492-0043

Murat Olgun 0000-0001-6981-4545

Project Number 606
Publication Date December 30, 2020
Submission Date October 27, 2020
Acceptance Date November 17, 2020
Published in Issue Year 2020 Volume: 4 Issue: 2

Cite

APA Çömlekçioğlu, N., Soylu, M. K., & Olgun, M. (2020). Evaluation of tomato genotypes for high temperature tolerance using certain reproductive and fruit traits by factor analysis. International Journal of Agriculture Forestry and Life Sciences, 4(2), 190-196.
AMA Çömlekçioğlu N, Soylu MK, Olgun M. Evaluation of tomato genotypes for high temperature tolerance using certain reproductive and fruit traits by factor analysis. Int J Agric For Life Sci. December 2020;4(2):190-196.
Chicago Çömlekçioğlu, Nuray, Mustafa Kemal Soylu, and Murat Olgun. “Evaluation of Tomato Genotypes for High Temperature Tolerance Using Certain Reproductive and Fruit Traits by Factor Analysis”. International Journal of Agriculture Forestry and Life Sciences 4, no. 2 (December 2020): 190-96.
EndNote Çömlekçioğlu N, Soylu MK, Olgun M (December 1, 2020) Evaluation of tomato genotypes for high temperature tolerance using certain reproductive and fruit traits by factor analysis. International Journal of Agriculture Forestry and Life Sciences 4 2 190–196.
IEEE N. Çömlekçioğlu, M. K. Soylu, and M. Olgun, “Evaluation of tomato genotypes for high temperature tolerance using certain reproductive and fruit traits by factor analysis”, Int J Agric For Life Sci, vol. 4, no. 2, pp. 190–196, 2020.
ISNAD Çömlekçioğlu, Nuray et al. “Evaluation of Tomato Genotypes for High Temperature Tolerance Using Certain Reproductive and Fruit Traits by Factor Analysis”. International Journal of Agriculture Forestry and Life Sciences 4/2 (December 2020), 190-196.
JAMA Çömlekçioğlu N, Soylu MK, Olgun M. Evaluation of tomato genotypes for high temperature tolerance using certain reproductive and fruit traits by factor analysis. Int J Agric For Life Sci. 2020;4:190–196.
MLA Çömlekçioğlu, Nuray et al. “Evaluation of Tomato Genotypes for High Temperature Tolerance Using Certain Reproductive and Fruit Traits by Factor Analysis”. International Journal of Agriculture Forestry and Life Sciences, vol. 4, no. 2, 2020, pp. 190-6.
Vancouver Çömlekçioğlu N, Soylu MK, Olgun M. Evaluation of tomato genotypes for high temperature tolerance using certain reproductive and fruit traits by factor analysis. Int J Agric For Life Sci. 2020;4(2):190-6.

download