Research Article
BibTex RIS Cite

Meyve Kalitesini ve Fotosentezi Artırmak İçin Ekzojen 28-Homobrassinolid ve Salisilik Asit Uygulamaları Sofralık Üzüm (Vitis vinifera L.) cv. Kızıl Çekirdeksiz

Year 2025, Volume: 9 Issue: 1, 12 - 16, 23.06.2025

Abstract

Çalışmamız 6 yaşında kendi köklü "Kızıl" çekirdeksiz asmalarda sırasıyla 2023 ve 2024 yıllarında yürütülmüştür. On altı asma üniform olarak seçilmiş ve ben düşme aşamasından on gün önce hasat öncesi ve % 15 – 20 renklenmede iki kez ilaçlanmıştır. Aşağıdaki işlemlerle: su (kontrol), Salisilik asit (SA), (75 ppm), 28-Homobrassinolit (28-BR), (0,4 ppm) ve Salisilik asit (SA), (75 ppm), 28-Homobrassinolit (28-BR) ile (0,4 ppm) birleştirildi. Sonuçlar, Salisilik asitin (SA) (75 ppm) 28-Homobrassinolit (28-BR) ile (0.4 ppm) birleştirilmesinin, antosiyanin ve karoten içeriklerinin konsantrasyonlarında önemli bir artışla sonuçlandığını gösterdi. Ayrıca, her iki mevsimde de kontrol ile karşılaştırıldığında aynı uygulama uygulanan "Kızıl" üzüm meyvelerinde toplam çözünür katı ve toplam çözünür katı/asitlik (Brix), yüksek konsantrasyonda ve en düşük Klorofil a, b konsantrasyonu ve asitlik ile gösterilmiştir. Aynı uygulamalar, her iki mevsimde de kontrole kıyasla "Kızıl" üzüm yapraklarında Klorofil a, b, (a+b) ve Toplam karbonhidrat konsantrasyonlarında önemli bir artışla sonuçlandı. Genel olarak, (75 ppm) Salisilik asit (SA) ile (0.4 ppm) 28-Homobrassinolit (28-BR) kombinasyonunun kullanımı, "Kızıl" çekirdeksiz meyvelerin ve fotosentezin kalitesini iki kat artırdı.

References

  • A.O.A.C. (1985). Official Methods of Analysis of the Association of Official Analytical Chemists. Washington D C, USA, 14th Ed.
  • Batista, V. C. V., Pereira, I. M. C., de Oliveira Paula-Marinho, S., Canuto, K. M., Pereira, R. D. C. A., Rodrigues, T. H. S., Carvalho, H. H. (2019). Salicylic acid modulates primary and volatile metabolites to alleviate salt stress-induced photosynthesis impairment on medicinal plant Egletes viscosa. Environmental and Experimental Botany, 167, 103870. https://doi.org/10.1016/j.envexpbot.2019.103870
  • Duan, B. B., Song, C. Z., Zhao, Y. M., Jiang, Y., Shi, P. B., Meng, J., Zhang, Z. W. (2019). Dynamic changes in anthocyanin biosynthesis regulation of cabernet sauvignon (vitis vinifera L.) grown during the rainy season under rain-shelter cultivation. Food Chemistry, 283, 404–413. https://doi.org/10.1016/j.foodchem.2018.12.131
  • Fuleki, T. F.J. Francis. (1968). Quantitative methods for anthocyanins. 1- Extraction and determination of total anthocyanin in cranberries. J of Food Sci., 33:72-77.
  • García-Pastor, M. E., Zapata, P. J., Castillo, S., Martínez-Romero, D., Valero, D., Serrano, M., Guillén, F. (2020). Preharvest Salicylate Treatments Enhance Antioxidant Compounds, Color and Crop Yield in Low Pigmented-Table Grape Cultivars and Preserve Quality Traits during Storage. Antioxidants (Basel, Switzerland), 9(9), 832. https://doi.org/10.3390/antiox9090832
  • Goodwine, T. W. (1965). Quantitative Analysis of the Chloroplast Pigments. Academic Press, London and New York.
  • Hayat, Q., Hayat, S., Irfan, M., Ahmad, A. (2010). Effect of exogenous salicylic acid under changing environment: a review. Environmental and Experimental Botany, 68, 14–25. https://doi.org/10.1016/j.envexpbot.2009.08.005
  • Hedge, I.E. Hofreiter, B. T. (1962). “Carboydrate Chemistry (Eds Whistler R.L. and Be Miller, J.N.) Academic Press New York.
  • Hu, Y., Yue, J., Nie, J., Luo, D., Cao, S., Wang, C., Chen, P. (2023). Salicylic acid alleviates the salt toxicity in kenaf by activating antioxidant system and regulating crucial pathways and genes. Industrial Crops and Products, 199, 116691. https://doi.org/10.1016/j.indcrop.2023.116691
  • Ju, Y. L., Yang, B. H., He, S., Tu, T. Y., Min, Z., Fang, Y. L., Sun, X. Y. (2019). Anthocyanin accumulation and biosynthesis are modulated by regulated deficit irrigation in Cabernet Sauvignon (Vitis Vinifera L.) grapes and wines. Plant Physiology and Biochemistry, 135, 469–479. https://doi.org/10.1016/j.plaphy.2018.11.013
  • Oraei, M., Panahirad, S., Zaare-Nahandi, F., Gohari, G. (2019). Pre-véraison treatment of salicylic acid to enhance anthocyanin content of grape (Vitis vinifera L.) berries. Journal of the science of food and agriculture, 99(13), 5946–5952. https://doi.org/10.1002/jsfa.9869
  • Oraei, M., Panahirad, S., Zaare-Nahandi, F., Gohari, G. (2019). Pre-veraison treatment of salicylic acid to enhance anthocyanin content of grape (Vitis vinifera L.) berries. Journal of the Science Food and Agriculture, 99, 5946–5952. https://doi.org/10.1002/jsfa.9869.
  • SAS (2000). JMP: User’s Guide, Version 4; SAS Institute, Inc.: Cary, NC, USA.
  • Shehata, R.S. (2024). The Role of Environmental Factors and Plant Growth Regulators on Grapes Coloration. Viticulture Studies (VIS), 4(2): 9-20. https://doi.org/10.52001/vis.2024.24.9.20
  • Shu, S., Tang, Y., Yuan, Y., Sun, J., Zhong, M., Guo, S. (2016). The role of 24-epibrassinolide in the regulation of photosynthetic characteristics and nitrogen metabolism of tomato seedlings under a combined low temperature and weak light stress. Plant physiology and biochemistry: PPB, 107, 344–353. https://doi.org/10.1016/j.plaphy.2016.06.021
  • Snedecor, G.W. Cochran, W.G. (1980). Statistical Methods. 6th Ed. Iowa State Univ. Press, Ames, Iowa. USA.
  • Sun, Yujun., Yunhan, He., Ali, Raza. Irfan., Xinmeng, Liu., Qiaoqiao, Yu., Qian Zhang., Deguang Yang. (2020). "Exogenous Brassinolide Enhances the Growth and Cold Resistance of Maize (Zea mays L.) Seedlings under Chilling Stress" Agronomy, 10(4), 488. https://doi.org/10.3390/agronomy10040488.
  • Talaat, N.B., Shawky, B.T. (2016). Dual Application of 24-Epibrassinolide and Spermine Confers Drought Stress Tolerance in Maize (Zea mays L.) by Modulating Polyamine and Protein Metabolism. J Plant Growth Regul 35, 518–533. https://doi.org/10.1007/s00344-015-9557-y
  • Vergara, A. E., Díaz, K., Carvajal, R., Espinoza, L., Alcalde, J. A., Pérez-Donoso, A. G. (2018). Exogenous Applications of Brassinosteroids Improve Color of Red Table Grape (Vitis vinifera L. Cv. "Redglobe") Berries. Frontiers in plant science, 9, 363. https://doi.org/10.3389/fpls.2018.00363
  • Vergara, A., Torrealba, M., Alcalde, J.A. Pérez-Donoso, A.G. (2020), Commercial brassinosteroid increases the concentration of anthocyanin in red tablegrape cultivars (Vitis vinifera L.). Australian Journal of Grape and Wine Research, 26: 427-433. https://doi.org/10.1111/ajgw.12457
  • Vergara, A.E., Díaz, K., Carvajal, R., Espinoza, L., Alcalde, J.A., Pérez-Donoso, A.G. (2018). Exogenous Applications of Brassinosteroids Improve Color of Red Table Grape (Vitis vinifera L. Cv. “Redglobe”) Berries. Frontiers Plant Science, 9, 363. https://doi.org/10.3389/fpls.2018.00363.
  • Wintermans, j. F. G. M. D. E. Mats. 1965. Spectrophtometeric characteristics of chlorophylls and their pheophytins in ethanol. Biochem. Biophys. Acta., 448-453.
  • Xia, X. J., Huang, L. F., Zhou, Y. H., Mao, W. H., Shi, K., Wu, J. X., Asami, T., Chen, Z., Yu, J. Q. (2009). Brassinosteroids promote photosynthesis and growth by enhancing activation of Rubisco and expression of photosynthetic genes in Cucumis sativus. Planta, 230(6), 1185–1196. https://doi.org/10.1007/s00425-009-1016-1
  • Yu, J. Q., Huang, L. F., Hu, W. H., Zhou, Y. H., Mao, W. H., Ye, S. F., Nogués, S. (2004). A role for brassinosteroids in the regulation of photosynthesis in Cucumis sativus. Journal of experimental botany, 55(399), 1135-1143. https://doi.org/10.1093/jxb/erh124
  • Yue, X. F., Zhao, Y. M., Ma, X., Jiao, X. L., Fang, Y. L., Zhang, Z. W., Ju, Y. L. (2021). Effects of leaf removal on the accumulation of anthocyanins and the expression of anthocyanin biosynthetic genes in Cabernet Sauvignon (Vitis vinifera L.) grapes. Journal of the Science of Food and Agriculture, 101(8). https://doi.org/10.1002/jsfa.10951
  • Yue, X., Ju, Y., Zhang, T., Yu, R., Xu, H., Zhang, Z. (2023). Application of salicylic acid to cv. Muscat Hamburg grapes for quality improvement: Effects on typical volatile aroma compounds and anthocyanin composition of grapes and wines. LWT. https://doi.org/10.1016/j.lwt.2023.114828

Exogenous of 28-Homobrassinolide and Salicylic acid Treatments to Improve Fruit Quality and Photosynthesis of Table Grapes (Vitis vinifera L.) cv. Crimson Seedless.

Year 2025, Volume: 9 Issue: 1, 12 - 16, 23.06.2025

Abstract

Our study was performed on 6 years old own rooted "Crimson" seedless grapevines during 2023 and 2024 respectively. Sixteen vines uniformly were selected and sprayed two times during the pre-harvest at ten days before veraison stage and at 15 – 20 % coloration. By following treatments: water as (the control), Salicylic acid (SA) at (75 ppm), 28-Homobrassinolide (28-BR) at (0.4 ppm) and Salicylic acid (SA) at (75 ppm) combined with 28-Homobrassinolide (28-BR) at (0.4 ppm). The results indicated that treatment of Salicylic acid (SA) at (75 ppm) combined with 28-Homobrassinolide (28-BR) at (0.4 ppm) Resulted in a significant increase in concentrations of anthocyanin and carotene contents. Moreover, total soluble solid and total soluble solid / acidity (Brix) where shown with high concentration and lowest concentration of Chlorophyll a, b and acidity in "Crimson" grape fruits with the same treatment as compared with the control in both seasons. The same treatments resulted in a significant increase in concentrations of Chlorophyll a, b, (a+b) and Total carbohydrates in "Crimson" grape leaves as compared with the control in both seasons. In general, the use of Salicylic acid (SA) at (75 ppm) combined with 28-Homobrassinolide (28-BR) at (0.4 ppm) two times improved quality of "Crimson" seedless fruits and photosynthesis.

References

  • A.O.A.C. (1985). Official Methods of Analysis of the Association of Official Analytical Chemists. Washington D C, USA, 14th Ed.
  • Batista, V. C. V., Pereira, I. M. C., de Oliveira Paula-Marinho, S., Canuto, K. M., Pereira, R. D. C. A., Rodrigues, T. H. S., Carvalho, H. H. (2019). Salicylic acid modulates primary and volatile metabolites to alleviate salt stress-induced photosynthesis impairment on medicinal plant Egletes viscosa. Environmental and Experimental Botany, 167, 103870. https://doi.org/10.1016/j.envexpbot.2019.103870
  • Duan, B. B., Song, C. Z., Zhao, Y. M., Jiang, Y., Shi, P. B., Meng, J., Zhang, Z. W. (2019). Dynamic changes in anthocyanin biosynthesis regulation of cabernet sauvignon (vitis vinifera L.) grown during the rainy season under rain-shelter cultivation. Food Chemistry, 283, 404–413. https://doi.org/10.1016/j.foodchem.2018.12.131
  • Fuleki, T. F.J. Francis. (1968). Quantitative methods for anthocyanins. 1- Extraction and determination of total anthocyanin in cranberries. J of Food Sci., 33:72-77.
  • García-Pastor, M. E., Zapata, P. J., Castillo, S., Martínez-Romero, D., Valero, D., Serrano, M., Guillén, F. (2020). Preharvest Salicylate Treatments Enhance Antioxidant Compounds, Color and Crop Yield in Low Pigmented-Table Grape Cultivars and Preserve Quality Traits during Storage. Antioxidants (Basel, Switzerland), 9(9), 832. https://doi.org/10.3390/antiox9090832
  • Goodwine, T. W. (1965). Quantitative Analysis of the Chloroplast Pigments. Academic Press, London and New York.
  • Hayat, Q., Hayat, S., Irfan, M., Ahmad, A. (2010). Effect of exogenous salicylic acid under changing environment: a review. Environmental and Experimental Botany, 68, 14–25. https://doi.org/10.1016/j.envexpbot.2009.08.005
  • Hedge, I.E. Hofreiter, B. T. (1962). “Carboydrate Chemistry (Eds Whistler R.L. and Be Miller, J.N.) Academic Press New York.
  • Hu, Y., Yue, J., Nie, J., Luo, D., Cao, S., Wang, C., Chen, P. (2023). Salicylic acid alleviates the salt toxicity in kenaf by activating antioxidant system and regulating crucial pathways and genes. Industrial Crops and Products, 199, 116691. https://doi.org/10.1016/j.indcrop.2023.116691
  • Ju, Y. L., Yang, B. H., He, S., Tu, T. Y., Min, Z., Fang, Y. L., Sun, X. Y. (2019). Anthocyanin accumulation and biosynthesis are modulated by regulated deficit irrigation in Cabernet Sauvignon (Vitis Vinifera L.) grapes and wines. Plant Physiology and Biochemistry, 135, 469–479. https://doi.org/10.1016/j.plaphy.2018.11.013
  • Oraei, M., Panahirad, S., Zaare-Nahandi, F., Gohari, G. (2019). Pre-véraison treatment of salicylic acid to enhance anthocyanin content of grape (Vitis vinifera L.) berries. Journal of the science of food and agriculture, 99(13), 5946–5952. https://doi.org/10.1002/jsfa.9869
  • Oraei, M., Panahirad, S., Zaare-Nahandi, F., Gohari, G. (2019). Pre-veraison treatment of salicylic acid to enhance anthocyanin content of grape (Vitis vinifera L.) berries. Journal of the Science Food and Agriculture, 99, 5946–5952. https://doi.org/10.1002/jsfa.9869.
  • SAS (2000). JMP: User’s Guide, Version 4; SAS Institute, Inc.: Cary, NC, USA.
  • Shehata, R.S. (2024). The Role of Environmental Factors and Plant Growth Regulators on Grapes Coloration. Viticulture Studies (VIS), 4(2): 9-20. https://doi.org/10.52001/vis.2024.24.9.20
  • Shu, S., Tang, Y., Yuan, Y., Sun, J., Zhong, M., Guo, S. (2016). The role of 24-epibrassinolide in the regulation of photosynthetic characteristics and nitrogen metabolism of tomato seedlings under a combined low temperature and weak light stress. Plant physiology and biochemistry: PPB, 107, 344–353. https://doi.org/10.1016/j.plaphy.2016.06.021
  • Snedecor, G.W. Cochran, W.G. (1980). Statistical Methods. 6th Ed. Iowa State Univ. Press, Ames, Iowa. USA.
  • Sun, Yujun., Yunhan, He., Ali, Raza. Irfan., Xinmeng, Liu., Qiaoqiao, Yu., Qian Zhang., Deguang Yang. (2020). "Exogenous Brassinolide Enhances the Growth and Cold Resistance of Maize (Zea mays L.) Seedlings under Chilling Stress" Agronomy, 10(4), 488. https://doi.org/10.3390/agronomy10040488.
  • Talaat, N.B., Shawky, B.T. (2016). Dual Application of 24-Epibrassinolide and Spermine Confers Drought Stress Tolerance in Maize (Zea mays L.) by Modulating Polyamine and Protein Metabolism. J Plant Growth Regul 35, 518–533. https://doi.org/10.1007/s00344-015-9557-y
  • Vergara, A. E., Díaz, K., Carvajal, R., Espinoza, L., Alcalde, J. A., Pérez-Donoso, A. G. (2018). Exogenous Applications of Brassinosteroids Improve Color of Red Table Grape (Vitis vinifera L. Cv. "Redglobe") Berries. Frontiers in plant science, 9, 363. https://doi.org/10.3389/fpls.2018.00363
  • Vergara, A., Torrealba, M., Alcalde, J.A. Pérez-Donoso, A.G. (2020), Commercial brassinosteroid increases the concentration of anthocyanin in red tablegrape cultivars (Vitis vinifera L.). Australian Journal of Grape and Wine Research, 26: 427-433. https://doi.org/10.1111/ajgw.12457
  • Vergara, A.E., Díaz, K., Carvajal, R., Espinoza, L., Alcalde, J.A., Pérez-Donoso, A.G. (2018). Exogenous Applications of Brassinosteroids Improve Color of Red Table Grape (Vitis vinifera L. Cv. “Redglobe”) Berries. Frontiers Plant Science, 9, 363. https://doi.org/10.3389/fpls.2018.00363.
  • Wintermans, j. F. G. M. D. E. Mats. 1965. Spectrophtometeric characteristics of chlorophylls and their pheophytins in ethanol. Biochem. Biophys. Acta., 448-453.
  • Xia, X. J., Huang, L. F., Zhou, Y. H., Mao, W. H., Shi, K., Wu, J. X., Asami, T., Chen, Z., Yu, J. Q. (2009). Brassinosteroids promote photosynthesis and growth by enhancing activation of Rubisco and expression of photosynthetic genes in Cucumis sativus. Planta, 230(6), 1185–1196. https://doi.org/10.1007/s00425-009-1016-1
  • Yu, J. Q., Huang, L. F., Hu, W. H., Zhou, Y. H., Mao, W. H., Ye, S. F., Nogués, S. (2004). A role for brassinosteroids in the regulation of photosynthesis in Cucumis sativus. Journal of experimental botany, 55(399), 1135-1143. https://doi.org/10.1093/jxb/erh124
  • Yue, X. F., Zhao, Y. M., Ma, X., Jiao, X. L., Fang, Y. L., Zhang, Z. W., Ju, Y. L. (2021). Effects of leaf removal on the accumulation of anthocyanins and the expression of anthocyanin biosynthetic genes in Cabernet Sauvignon (Vitis vinifera L.) grapes. Journal of the Science of Food and Agriculture, 101(8). https://doi.org/10.1002/jsfa.10951
  • Yue, X., Ju, Y., Zhang, T., Yu, R., Xu, H., Zhang, Z. (2023). Application of salicylic acid to cv. Muscat Hamburg grapes for quality improvement: Effects on typical volatile aroma compounds and anthocyanin composition of grapes and wines. LWT. https://doi.org/10.1016/j.lwt.2023.114828
There are 26 citations in total.

Details

Primary Language English
Subjects Oenology and Viticulture
Journal Section Original Papers
Authors

Raed S. Shehata 0000-0002-7086-3982

Early Pub Date May 8, 2025
Publication Date June 23, 2025
Submission Date February 25, 2025
Acceptance Date April 22, 2025
Published in Issue Year 2025 Volume: 9 Issue: 1

Cite

APA Shehata, R. S. (2025). Exogenous of 28-Homobrassinolide and Salicylic acid Treatments to Improve Fruit Quality and Photosynthesis of Table Grapes (Vitis vinifera L.) cv. Crimson Seedless. International Journal of Agriculture Forestry and Life Sciences, 9(1), 12-16.
AMA Shehata RS. Exogenous of 28-Homobrassinolide and Salicylic acid Treatments to Improve Fruit Quality and Photosynthesis of Table Grapes (Vitis vinifera L.) cv. Crimson Seedless. Int J Agric For Life Sci. June 2025;9(1):12-16.
Chicago Shehata, Raed S. “ Crimson Seedless”. International Journal of Agriculture Forestry and Life Sciences 9, no. 1 (June 2025): 12-16.
EndNote Shehata RS (June 1, 2025) Exogenous of 28-Homobrassinolide and Salicylic acid Treatments to Improve Fruit Quality and Photosynthesis of Table Grapes (Vitis vinifera L.) cv. Crimson Seedless. International Journal of Agriculture Forestry and Life Sciences 9 1 12–16.
IEEE R. S. Shehata, “ Crimson Seedless”., Int J Agric For Life Sci, vol. 9, no. 1, pp. 12–16, 2025.
ISNAD Shehata, Raed S. “ Crimson Seedless”. International Journal of Agriculture Forestry and Life Sciences 9/1 (June 2025), 12-16.
JAMA Shehata RS. Exogenous of 28-Homobrassinolide and Salicylic acid Treatments to Improve Fruit Quality and Photosynthesis of Table Grapes (Vitis vinifera L.) cv. Crimson Seedless. Int J Agric For Life Sci. 2025;9:12–16.
MLA Shehata, Raed S. “ Crimson Seedless”. International Journal of Agriculture Forestry and Life Sciences, vol. 9, no. 1, 2025, pp. 12-16.
Vancouver Shehata RS. Exogenous of 28-Homobrassinolide and Salicylic acid Treatments to Improve Fruit Quality and Photosynthesis of Table Grapes (Vitis vinifera L.) cv. Crimson Seedless. Int J Agric For Life Sci. 2025;9(1):12-6.

lThe "International Journal of Agriculture, Forestry and Life Sciences" (IJAFLS) content is licensed under a Creative Commons Attribution-NonCommercial (CC BY-NC) 4.0  by-nc.png International License which permits third parties to share and adapt the content for non-commercial purposes by giving the appropriate credit to the original work. Authors retain the copyright of their published work in the International Journal of Agriculture, Environment and Food Sciences.