Research Article
BibTex RIS Cite
Year 2016, Special Issue (2016), 43 - 47, 01.12.2016
https://doi.org/10.18100/ijamec.266030

Abstract

References

  • [1] D. W. Winters, J.D. Shea, E. L. Madsen, G. R. Frank, B. D. Van Veen, and S. C. Hagness, “Estimating the breast surface using UWB microwave monostatic backscatter measurements,” IEEE Transactions on Biomedical Engineering, vol. 55, pp. 247–256,2008.
  • [2] S. Nag, M. A. Barnes, T. Payment, and G. W. Holladay, “An ultra-wideband through-wall radar for detecting the motion of people in real time”, Proc. SPIE, Radar Sensor Technology and Data Visualization, 2002, vol. 4744.
  • [3] D. L. Sostanovsky, A. O. Boryssenko, and E. S. Boryssenko, “UWB radar imaging system with two-element receiving array antenna”, Proc. IEEE 5th International Conference on Antenna Theory and Techniques, 2005, pp. 357–360.
  • [4] W. Cui, P. Ranta, T. A. Brown, and C. Reed, “Wireless video streaming over UWB”, Proc. IEEE International Conference on Ultra-Wideband 2007, pp. 933–936.
  • [5] D. Valente, E. Cianca, S. Mukherjee, T. Rossi, M. Ruggieri, and R. Prasad, “Comparison of UWB approaches applied to ehf satellite communications”, Proc. IEEE Aerospace Conference 2012, pp. 1–6.
  • [6] Federal Communications Commission, “FCC report and order on ultra wideband technology”, Washington DC, 2002.
  • [7] S. G. Kim and K. Chang, “Ultra wideband exponentially-tapered antipodal vivaldi antennas”, Proc. IEEE Antennas and Propagation Society Symposium, 2004, pp. 2273–2276.
  • [8] S. Y. Chen; P. H. Wang; and P. Hsu, “Uniplanar log-periodic slot antenna fed by a CPW for UWB applications”, IEEE Antennas and Wireless Propagation Lett., vol. 5, pp. 256–259, 2006.
  • [9] B. A. Kramer, M. Lee, C. C. Chen, and J. L. Volakis, “Design and performance of an ultra-wideband ceramic-loaded slot spiral”, IEEE Transactions on Antennas and Propagation, vol. 53, pp. 2193–2199, July 2005.
  • [10] Q. Wu, R. Jin, J. Geng, M. Ding, “printed omni-directional UWB monopole antenna with very compact size”, IEEE Transactions on Antennas and Propagation, vol. 56, pp. 896–899, 2008.
  • [11] J. Liang, C. C. Chiau, X. Chen, C. G. Parini, “Study of a printed circular disc monopole antenna for UWB systems”, IEEE Transactions on Antennas and Propagation, vol. 53, pp. 3500–3504, July 2005.
  • [12] K. G. Thomas and N. Lenin, “Ultra-Wideband Printed Monopole Antenna”, Microwave and Optical Technology Lett., vol. 49, pp. 1082-1085,2007.
  • [13] S. Y. Suh, W. Stutzman, and W. Davis, “A new ultra-wideband printed monopole antenna: the planar inverted cone antenna (PICA)”, IEEE Transactions on Antennas and Propagation, vol. 52, pp. 1361–1364, 2004.
  • [14] A. A. Eldek, “Numerical analysis of a small ultra wideband microstrip-fed tap monopole antenna”, Progress In Electromagnetics Research, vol. 65, pp. 59–69, 2006.
  • [15] J. Jung, W. Choi, and J. Choi, “A small wideband microstrip-fed monopole antenna for UWB WBAN”, IEEE Microwave Lett., vol. 15, pp. 703–705, 2005.
  • [16] F. Yang, X. Zhang, and Y. Rahmat-Samii, “Wideband E-shaped patch antennas for wireless communications”, IEEE Transactions on Antennas and Propagation, vol. 49, pp. 1094–1100, 2001.
  • [17] S. Weigand, G. H. Huff, K. H. Pan, and J. T. Bernard, “ Analysis and design of broadband single layer U-slot microstrip patch antennas”, IEEE Transactions on Antennas and Propagation, vol. 51, pp. 457–468, 2003.
  • [18] A. M. Abbosh and M. E. Bialkowski, “Design of UWB planar band-notched antenna using parasitic elements”, IEEE Transactions on Antennas and Propagation, vol. 57, pp. 796–799, 2009.
  • [19] C. S. Kim, J. S. Park, D. Ahn, and J. B. Lim, “ A novel 1-D periodic defected ground structure for planar circuits”, IEEE Microwave and Wireless Components Lett., vol. 10, pp. 131–133, 2000.
  • [20] M. A. Antoniades and G. V. Eleftheriades, “A compact multiband monopole antenna with a defected ground plane,” IEEE Antennas and Wireless Propagation Lett., vol. 7, pp. 652–655, 2008.
  • [21] K. H. Chiang and K. W. Tam “Microstrip monopole antenna with enhanced bandwidth using defected ground structure,” IEEE Antennas and Wireless Propagation Lett., vol. 7, pp. 532–535, 2008.
  • [22] A. Nouri and G. R. Dadashzadeh, “A compact UWB band-notched printed monopole antenna with defected ground structure,” IEEE Antennas and Wireless Propagation Lett., vol. 10, pp. 1178–1181, 2008.

Microstrip-fed Triangular UWB Microstrip Antenna Based on DGS

Year 2016, Special Issue (2016), 43 - 47, 01.12.2016
https://doi.org/10.18100/ijamec.266030

Abstract

An ultra-wideband (UWB) monopole microstrip antenna is designed in this
study. The design consists of a radiating triangular patch antenna (TPA) fed
through a 50 Ohm microstrip transmission line (MTL) constructed over a defected
ground structure (DGS). The triangular monopole well is matched to MTL with
inserting a thin strip line. The performance of the proposed antenna is
numerically investigated using method of moments (MoM) and verified through
measurements. Based on the measured results, the antenna operates over large
frequency range of 2.6-18.2 GHz at -10 dB. This makes the design suitable for
UWB applications.  The proposed antenna
has better characteristics in terms of radiation pattern, peak gain and total
efficiency across the operating ultra-wideband frequency range. Furthermore,
the antenna system is suitable for near-millimetre wave applications, since the
operating band reaches to 18.2 GHz.

References

  • [1] D. W. Winters, J.D. Shea, E. L. Madsen, G. R. Frank, B. D. Van Veen, and S. C. Hagness, “Estimating the breast surface using UWB microwave monostatic backscatter measurements,” IEEE Transactions on Biomedical Engineering, vol. 55, pp. 247–256,2008.
  • [2] S. Nag, M. A. Barnes, T. Payment, and G. W. Holladay, “An ultra-wideband through-wall radar for detecting the motion of people in real time”, Proc. SPIE, Radar Sensor Technology and Data Visualization, 2002, vol. 4744.
  • [3] D. L. Sostanovsky, A. O. Boryssenko, and E. S. Boryssenko, “UWB radar imaging system with two-element receiving array antenna”, Proc. IEEE 5th International Conference on Antenna Theory and Techniques, 2005, pp. 357–360.
  • [4] W. Cui, P. Ranta, T. A. Brown, and C. Reed, “Wireless video streaming over UWB”, Proc. IEEE International Conference on Ultra-Wideband 2007, pp. 933–936.
  • [5] D. Valente, E. Cianca, S. Mukherjee, T. Rossi, M. Ruggieri, and R. Prasad, “Comparison of UWB approaches applied to ehf satellite communications”, Proc. IEEE Aerospace Conference 2012, pp. 1–6.
  • [6] Federal Communications Commission, “FCC report and order on ultra wideband technology”, Washington DC, 2002.
  • [7] S. G. Kim and K. Chang, “Ultra wideband exponentially-tapered antipodal vivaldi antennas”, Proc. IEEE Antennas and Propagation Society Symposium, 2004, pp. 2273–2276.
  • [8] S. Y. Chen; P. H. Wang; and P. Hsu, “Uniplanar log-periodic slot antenna fed by a CPW for UWB applications”, IEEE Antennas and Wireless Propagation Lett., vol. 5, pp. 256–259, 2006.
  • [9] B. A. Kramer, M. Lee, C. C. Chen, and J. L. Volakis, “Design and performance of an ultra-wideband ceramic-loaded slot spiral”, IEEE Transactions on Antennas and Propagation, vol. 53, pp. 2193–2199, July 2005.
  • [10] Q. Wu, R. Jin, J. Geng, M. Ding, “printed omni-directional UWB monopole antenna with very compact size”, IEEE Transactions on Antennas and Propagation, vol. 56, pp. 896–899, 2008.
  • [11] J. Liang, C. C. Chiau, X. Chen, C. G. Parini, “Study of a printed circular disc monopole antenna for UWB systems”, IEEE Transactions on Antennas and Propagation, vol. 53, pp. 3500–3504, July 2005.
  • [12] K. G. Thomas and N. Lenin, “Ultra-Wideband Printed Monopole Antenna”, Microwave and Optical Technology Lett., vol. 49, pp. 1082-1085,2007.
  • [13] S. Y. Suh, W. Stutzman, and W. Davis, “A new ultra-wideband printed monopole antenna: the planar inverted cone antenna (PICA)”, IEEE Transactions on Antennas and Propagation, vol. 52, pp. 1361–1364, 2004.
  • [14] A. A. Eldek, “Numerical analysis of a small ultra wideband microstrip-fed tap monopole antenna”, Progress In Electromagnetics Research, vol. 65, pp. 59–69, 2006.
  • [15] J. Jung, W. Choi, and J. Choi, “A small wideband microstrip-fed monopole antenna for UWB WBAN”, IEEE Microwave Lett., vol. 15, pp. 703–705, 2005.
  • [16] F. Yang, X. Zhang, and Y. Rahmat-Samii, “Wideband E-shaped patch antennas for wireless communications”, IEEE Transactions on Antennas and Propagation, vol. 49, pp. 1094–1100, 2001.
  • [17] S. Weigand, G. H. Huff, K. H. Pan, and J. T. Bernard, “ Analysis and design of broadband single layer U-slot microstrip patch antennas”, IEEE Transactions on Antennas and Propagation, vol. 51, pp. 457–468, 2003.
  • [18] A. M. Abbosh and M. E. Bialkowski, “Design of UWB planar band-notched antenna using parasitic elements”, IEEE Transactions on Antennas and Propagation, vol. 57, pp. 796–799, 2009.
  • [19] C. S. Kim, J. S. Park, D. Ahn, and J. B. Lim, “ A novel 1-D periodic defected ground structure for planar circuits”, IEEE Microwave and Wireless Components Lett., vol. 10, pp. 131–133, 2000.
  • [20] M. A. Antoniades and G. V. Eleftheriades, “A compact multiband monopole antenna with a defected ground plane,” IEEE Antennas and Wireless Propagation Lett., vol. 7, pp. 652–655, 2008.
  • [21] K. H. Chiang and K. W. Tam “Microstrip monopole antenna with enhanced bandwidth using defected ground structure,” IEEE Antennas and Wireless Propagation Lett., vol. 7, pp. 532–535, 2008.
  • [22] A. Nouri and G. R. Dadashzadeh, “A compact UWB band-notched printed monopole antenna with defected ground structure,” IEEE Antennas and Wireless Propagation Lett., vol. 10, pp. 1178–1181, 2008.
There are 22 citations in total.

Details

Subjects Engineering
Journal Section Research Article
Authors

Abdurrahim Toktaş

Mehmet Yerlikaya

Enes Yiğit

Publication Date December 1, 2016
Published in Issue Year 2016 Special Issue (2016)

Cite

APA Toktaş, A., Yerlikaya, M., & Yiğit, E. (2016). Microstrip-fed Triangular UWB Microstrip Antenna Based on DGS. International Journal of Applied Mathematics Electronics and Computers(Special Issue-1), 43-47. https://doi.org/10.18100/ijamec.266030
AMA Toktaş A, Yerlikaya M, Yiğit E. Microstrip-fed Triangular UWB Microstrip Antenna Based on DGS. International Journal of Applied Mathematics Electronics and Computers. December 2016;(Special Issue-1):43-47. doi:10.18100/ijamec.266030
Chicago Toktaş, Abdurrahim, Mehmet Yerlikaya, and Enes Yiğit. “Microstrip-Fed Triangular UWB Microstrip Antenna Based on DGS”. International Journal of Applied Mathematics Electronics and Computers, no. Special Issue-1 (December 2016): 43-47. https://doi.org/10.18100/ijamec.266030.
EndNote Toktaş A, Yerlikaya M, Yiğit E (December 1, 2016) Microstrip-fed Triangular UWB Microstrip Antenna Based on DGS. International Journal of Applied Mathematics Electronics and Computers Special Issue-1 43–47.
IEEE A. Toktaş, M. Yerlikaya, and E. Yiğit, “Microstrip-fed Triangular UWB Microstrip Antenna Based on DGS”, International Journal of Applied Mathematics Electronics and Computers, no. Special Issue-1, pp. 43–47, December 2016, doi: 10.18100/ijamec.266030.
ISNAD Toktaş, Abdurrahim et al. “Microstrip-Fed Triangular UWB Microstrip Antenna Based on DGS”. International Journal of Applied Mathematics Electronics and Computers Special Issue-1 (December 2016), 43-47. https://doi.org/10.18100/ijamec.266030.
JAMA Toktaş A, Yerlikaya M, Yiğit E. Microstrip-fed Triangular UWB Microstrip Antenna Based on DGS. International Journal of Applied Mathematics Electronics and Computers. 2016;:43–47.
MLA Toktaş, Abdurrahim et al. “Microstrip-Fed Triangular UWB Microstrip Antenna Based on DGS”. International Journal of Applied Mathematics Electronics and Computers, no. Special Issue-1, 2016, pp. 43-47, doi:10.18100/ijamec.266030.
Vancouver Toktaş A, Yerlikaya M, Yiğit E. Microstrip-fed Triangular UWB Microstrip Antenna Based on DGS. International Journal of Applied Mathematics Electronics and Computers. 2016(Special Issue-1):43-7.