Research Article
BibTex RIS Cite

Growth Performance of Sweet Corn (zea mays convar. Saccharata var. Rugose) Plants Under Different Groundwater Depth and Salinity Conditions

Year 2023, Volume: 9 Issue: 1, 68 - 79, 25.04.2023
https://doi.org/10.24180/ijaws.1121575

Abstract

The objective of this study was to determine the growth performance of sweet corn plants under three different groundwater depths (30 (D1), 55 (D2), and 80 (D3) cm) and three different groundwater salinities (0.38 (T1), 5 (T2), and 10 (T3) dS m-1). The experiment was conducted in three replicates according to the randomized complete block design in a rain area (120 m2) under drainable lysimeter conditions. As a result of the study, the absolute growth rate, relative growth rate, net assimilation rate, crop growth rate, specific leaf area, and leaf area ratio increased with increasing groundwater depth. However, the growth performance of sweet corn plants decreased significantly with increasing groundwater salinity. In the study, the absolute growth rate, leaf area ratio, and leaf area ratio varied between 1.51 - 2.37 cm d-1, 69.48 - 90.96 cm2 d-1, and 0.12-0.17 mg cm-2 d-1, respectively. The highest value of specific leaf weight was obtained in D3 with 215.69 cm2 g-1, while the lowest value was obtained in D1 with 200.07 cm2 g-1. The lowest values of plant growth parameters were obtained in D1×T3, while the highest values were obtained in the D2×T1 treatment. It was also found that sweet corn plant growth was significantly reduced in regions with groundwater depth less than < 55 cm and groundwater salinity greater than 5 dS m-1. It was concluded that sweet corn plants have a low tolerance to saline and 30 cm deep groundwater. In conclusion, high values for plant growth of sweet corn were observed at 55 cm groundwater depth and groundwater salinity of 0.38 dSm-1.

References

  • Atwell, B. J., Kriedemann, P. E., & Turnbull, C. G. (Eds.). (1999). Plants in action: adaptation in nature, performance in cultivation. Macmillan Education AU.
  • Atakul, Ş., Kahraman, Ş., & Kılınç, S. (2021). Ana ürün koşullarında bazı şeker mısır genotiplerinin verim ve verim unsurlarının belirlenmesi. International Journal of Eastern Mediterranean Agricultural Research, 4(1), 32-39.
  • Ayars, J. E., Christen, E. W. & Hornbuckle, J. W. (2006). Controlled drainage for improved water management in arid regions irrigated agriculture. Agricultural Water Management, 86(1-2), 128-139. https://doi.org/10.1016/j.agwat.2006.07.004
  • Barrett-Lennard, E.G. (2003). The interaction between waterlogging and salinity in higher plants: Causes, consequences and implications. Plant and Soil, 253, 35–54.
  • Cornelissen J.H.C., Lavorel, S., Garnier, E., Diaz, S., Buchmann, N., Gurvich, D.E., Reich, P.B., ter Steege H., Morgan, H. D., van der Heijden, M. G. A., Pausas, J. G., & Poorter, H. (2003). A handbook of protocols for standardized and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51(3).
  • Ertek, A., & Kara, B. (2013). Yield and quality of sweet corn under deficit irrigation. Agricultural Water Management, 129, 138-144. https://doi.org/10.1016/j.agwat.2013.07.012
  • Fidantemiz, Y. F. Jia, X. Daigh, A. L. Hatterman-Valenti, H. Steele, D. D. Niaghi, A. R. & Simsek, H. (2019). Effect of water table depth on soybean water use, growth, and yield parameters. Water, 11(5), 931. https://doi.org/10.3390/w11050931
  • Ghamarnia, H., & Jalili, Z. (2014). Shallow saline groundwater use by Black cumin (Nigella sativa L.) in the presence of surface water in a semi-arid region. Agricultural Water Management. 132, 89-100. https://doi.org/10.1016/j.agwat.2013.10.012
  • Ghobadi, M. E., Ghobadi, M., & Zebarjadi, A. (2017). Effect of waterlogging at different growth stages on some morphological traits of wheat varieties. International Journal of Biometeorology, 61(4), 635-645. https://doi.org/10.1007/s00484-016-1240-x.
  • Gao, X., Huo, Z., Qu, Z., Xu, X., Huang, G., & Steenhuis, T. S. (2017). Modeling contribution of shallow groundwater to evapotranspiration and yield of maize in an arid area. Scientific reports, 7(1), 1-13. https://doi.org/10.1038/srep43122.
  • Ghule, P. L., Dahiphale, V. V., Jadhav, J. D., & Palve, D. K. (2013). Absolute growth rate, relative growth rate, net assimilation rate as influenced on dry matter weight of Bt cotton. International Research Journal of Agricultural Economics and Statistics, 4(1), 42-46.
  • Gou, Q. Zhu, Y. Horton, R. Lü, H. Wang, Z. Su, J. Cui, C. Zhang, H. Wang, X. Zhang, J. & Yuan, F. (2020). Effect of climate change on the contribution of groundwater to the root zone of winter wheat in the Huaibei Plain of China. Agricultural Water Management, 240, 106292. https://doi.org/10.1016/j.agwat.2020.106292
  • Grime J.P. (2001). Plant strategies, vegetation processes, and ecosystem properties. John Wiley and Sons, New Jersey (USA), 456 p.
  • Huo, Z., Feng, S., Huang, G., Zheng, Y., Wang, Y., & Guo, P. (2012). Effect of groundwater level depth and irrigation amount on water fluxes at the groundwater table and water use of wheat. Irrigation and Drainage, 61(3), 348-356. https://doi.org/10.1002/ird.685
  • Kahlown, M. A., & Ashraf, M. (2005). Effect of shallow groundwater table on crop water requirements and crop yields. Agricultural Water Management, 76(1), 24-35. https://doi.org/10.1016/j.agwat.2005.01.005
  • Korkmaz, A., & Akınoğlu, G. (2021). Bitki beslemede toprak-kök etkileşimi. Ankara: Gece Kitaplığı Yayın Evi. Kiremit, M. S., Arslan, H., Sezer, İ., & Akay, H. (2022). Evaluating and Modeling of the Seedling Growth Ability of Wheat Seeds as Affected by Shallow-Saline Groundwater Conditions. Gesunde Pflanzen, 74(2), 357-369. https://doi.org/10.1007/s10343-021-00614-x
  • Kummu, M., Guillaume, J. H., de Moel, H., Eisner, S., Flörke, M., Porkka, M., Siebert, S., Veldkamp, T. I. E., & Ward, P. J. (2016). The world’s road to water scarcity: shortage and stress in the 20th century and pathways towards sustainability. Scientific Reports, 6(1), 1-16. https://doi.org/10.1038/srep38495
  • Mano, Y., Omori, F., Takamizo, T., Kindiger, B., Bird, R. M., & Loaisiga, C. H. (2006). Variation for root aerenchyma formation in flooded and non-flooded maize and teosinte seedlings. Plant and Soil, 281(1), 269-279. https://doi.org/10.1007/s11104-005-4268-y
  • Osman, H. M., & Arslan, H. (2022). Response of leaf nutrients, yield, growth parameters, and evapotranspiration of sweet corn (Zea mays L. saccharata Sturt) to shallow and saline groundwater depths. Archives of Agronomy and Soil Science, 1-16. https://doi.org/10.1080/03650340.2022.2140144.
  • Öner, F., & Sezer, İ. (2007). Işık ve sıcaklığın mısırda (Zea mays L.) büyüme parametreleri üzerine kantitatif etkileri. Tekirdağ Ziraat Fakültesi Dergisi, 4(1), 55-64.
  • Özalkan, Ç., Sepetoğlu, H., İhsanullah, D. A. U. R., & Şen, O. F. (2010). Relationship between some plant growth parameters and grain yield of chickpea (Cicer arietinum L.) during different growth stages. Turkish journal of field crops, 15(1), 79-83.
  • Palm, E., Klein, J. D., Mancuso, S., & Guidi Nissim, W. (2022). The physiological response of different brook willow (salix acmophylla boiss.) ecotypes to salinity. Plants, 11(6), 739. https://doi.org/10.3390/plants11060739
  • Ren, B., Zhang, J., Dong, S., Liu, P., & Zhao, B. (2016). Effects of waterlogging on leaf mesophyll cell ultrastructure and photosynthetic characteristics of summer maize. PloS one, 11(9), e0161424. https://doi.org/10.1371/journal.pone.0161424
  • Pereira, E. S., Silva, O. N., Felipe, J. P., Alves, G. A., & Lobato, A. K. (2015). Antioxidant enzymes efficiently control leaf and root cell damage in young Euterpe oleracea plants exposed to waterlogging. Indian Journal of Plant Physiology, 20(3), 213-219. https://doi.org/10.1007/s40502-015-0162-7
  • Sezer, İ., Akay, H., Mut, Z., Arslan, H., Öztürk, E., Erbaş Köse, Ö. D., & Kiremit, M. S. (2021). Effects of different water table depth and salinity levels on quality traits of bread wheat. Agriculture, 11(10), 969. https://doi.org/10.3390/agriculture11100969
  • Talebnejad, R., & Sepaskhah, A. R. (2015). Effect of different saline groundwater depths and irrigation water salinities on yield and water use of quinoa in lysimeter. Agricultural Water Management, 148, 177-188. https://doi.org/10.1016/j.agwat.2014.10.005
  • Temizel, K. E., & Tok, S. (2020). The effect of irrigation waters with different sodium values on some soil and plant characteristics in red cabbage (Brassica oleracea var. capitata f. rubra) plant. Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi, 6(1), 84-90. doi: 10.24180/ijaws.631837
  • Tok, S., & Temizel, K. E. (2022). Effects of ırrigation water in different salinity on yield and quality parameters of tobacco (Nicotiana tabacum L.) plant. Gesunde Pflanzen, 74(1), 9-16. https://doi.org/10.1007/s10343-021-00584-0
  • TÜİK. (2021). Tahıllar ve diğer bitkisel ürünlerin alan ve üretim miktarları. https://data.tuik.gov.tr/Kategori/GetKategori?p=tarim-111&dil=1 [Erişim tarihi: 25 Kasım 2022] Zhang, W., Zhu, J., Zhou, X., & Li, F. (2018). Effects of shallow groundwater table and fertilization level on soil physico-chemical properties, enzyme activities, and winter wheat yield. Agricultural Water Management, 208, 307-317. https://doi.org/10.1016/j.agwat.2018.06.039
  • Zhao, Y., Li, F., Wang, Y., & Jiang, R. (2020). Evaluating the effect of groundwater table on summer maize growth using the AquaCrop model. Environmental Modeling & Assessment, 25(3), 343-353. https://doi.org/10.1007/s10666-019-09680-y
  • Zhu, Y., Ren, L., Horton, R., Lü, H., Wang, Z., & Yuan, F. (2018). Estimating the contribution of groundwater to the root zone of winter wheat using root density distribution functions. Vadose Zone Journal, 17(1), 1-15. https://doi.org/10.2136/vzj2017.04.0075

Farklı Taban Suyu Derinliği ve Tuzluluğu Koşullarında Şeker Mısırı (Zea mays convar. Saccharata var. Rugose) Bitkisinin Büyüme Performansı

Year 2023, Volume: 9 Issue: 1, 68 - 79, 25.04.2023
https://doi.org/10.24180/ijaws.1121575

Abstract

Bu çalışmada, şeker mısırı bitkilerinin 3 farklı taban suyu derinliği (30 (D1), 55 (D2) ve 80 (D3) cm) ve 3 farklı taban suyu tuzluluğu (0.38 (T1), 5 (T2) ve 10 (T3) dS m-1) koşullarında büyüme performanslarının belirlenmesi amaçlanmıştır. Deneme, tesadüf blokları deneme desenine göre 3 tekerrürlü olarak yağmurdan korunaklı 120 m2’lik alanda drene edilebilir lizimetre koşullarında yürütülmüştür. Çalışma sonucunda, taban suyu derinliği arttıkça mutlak büyüme oranı, nispi büyüme hızı, net asimilasyon oranı, bitki büyüme hızı, özgül yaprak alanı ve oransal yaprak alanı artmıştır. Ancak, taban suyu tuzluluğu arttıkça şeker mısırı bitkilerinin büyüme performansları önemli derecede azalmıştır. Çalışmada, mutlak büyüme oranı 1.51-2.37 cm g-1, oransal yaprak alanı 69.48-90.96 cm2 g-1 ve net asimilasyon oranı 0.12-0.17 mg cm-2 g-1 arasında değişmiştir. En yüksek özgül yaprak ağırlığı değeri 215.69 cm2 g-1 ile D3 konusunda elde edilirken en düşük değer ise 200.07 cm2 g-1 ile D1 konusunda elde edilmiştir. En düşük bitki büyüme parametreleri değerleri D1×T3 , en yüksek değerler ise D2×T1 konusunda tespit edilmiştir. Bununla birlikte, taban suyu derinliği <55 cm’den daha az ve taban suyu tuzluluğu 5 dS m-1’den daha yüksek olan bölgelerde şeker mısırı bitkilerinin gelişiminin önemli derecede azaldığı belirlenmiştir. Buna göre, şeker mısırı bitkilerinin taban suyunun tuzlu ve 30 cm derinlikte olduğu koşullara karşı düşük toleransa sahip olduğu belirlenmiştir. Sonuç olarak, şeker mısırı için yüksek bitki büyüme performansı değerleri taban suyu derinliğinin 55 cm ve taban suyu tuzluluğunun 0.38 dS m-1 olduğu koşullarda gözlemlenmiştir.

References

  • Atwell, B. J., Kriedemann, P. E., & Turnbull, C. G. (Eds.). (1999). Plants in action: adaptation in nature, performance in cultivation. Macmillan Education AU.
  • Atakul, Ş., Kahraman, Ş., & Kılınç, S. (2021). Ana ürün koşullarında bazı şeker mısır genotiplerinin verim ve verim unsurlarının belirlenmesi. International Journal of Eastern Mediterranean Agricultural Research, 4(1), 32-39.
  • Ayars, J. E., Christen, E. W. & Hornbuckle, J. W. (2006). Controlled drainage for improved water management in arid regions irrigated agriculture. Agricultural Water Management, 86(1-2), 128-139. https://doi.org/10.1016/j.agwat.2006.07.004
  • Barrett-Lennard, E.G. (2003). The interaction between waterlogging and salinity in higher plants: Causes, consequences and implications. Plant and Soil, 253, 35–54.
  • Cornelissen J.H.C., Lavorel, S., Garnier, E., Diaz, S., Buchmann, N., Gurvich, D.E., Reich, P.B., ter Steege H., Morgan, H. D., van der Heijden, M. G. A., Pausas, J. G., & Poorter, H. (2003). A handbook of protocols for standardized and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51(3).
  • Ertek, A., & Kara, B. (2013). Yield and quality of sweet corn under deficit irrigation. Agricultural Water Management, 129, 138-144. https://doi.org/10.1016/j.agwat.2013.07.012
  • Fidantemiz, Y. F. Jia, X. Daigh, A. L. Hatterman-Valenti, H. Steele, D. D. Niaghi, A. R. & Simsek, H. (2019). Effect of water table depth on soybean water use, growth, and yield parameters. Water, 11(5), 931. https://doi.org/10.3390/w11050931
  • Ghamarnia, H., & Jalili, Z. (2014). Shallow saline groundwater use by Black cumin (Nigella sativa L.) in the presence of surface water in a semi-arid region. Agricultural Water Management. 132, 89-100. https://doi.org/10.1016/j.agwat.2013.10.012
  • Ghobadi, M. E., Ghobadi, M., & Zebarjadi, A. (2017). Effect of waterlogging at different growth stages on some morphological traits of wheat varieties. International Journal of Biometeorology, 61(4), 635-645. https://doi.org/10.1007/s00484-016-1240-x.
  • Gao, X., Huo, Z., Qu, Z., Xu, X., Huang, G., & Steenhuis, T. S. (2017). Modeling contribution of shallow groundwater to evapotranspiration and yield of maize in an arid area. Scientific reports, 7(1), 1-13. https://doi.org/10.1038/srep43122.
  • Ghule, P. L., Dahiphale, V. V., Jadhav, J. D., & Palve, D. K. (2013). Absolute growth rate, relative growth rate, net assimilation rate as influenced on dry matter weight of Bt cotton. International Research Journal of Agricultural Economics and Statistics, 4(1), 42-46.
  • Gou, Q. Zhu, Y. Horton, R. Lü, H. Wang, Z. Su, J. Cui, C. Zhang, H. Wang, X. Zhang, J. & Yuan, F. (2020). Effect of climate change on the contribution of groundwater to the root zone of winter wheat in the Huaibei Plain of China. Agricultural Water Management, 240, 106292. https://doi.org/10.1016/j.agwat.2020.106292
  • Grime J.P. (2001). Plant strategies, vegetation processes, and ecosystem properties. John Wiley and Sons, New Jersey (USA), 456 p.
  • Huo, Z., Feng, S., Huang, G., Zheng, Y., Wang, Y., & Guo, P. (2012). Effect of groundwater level depth and irrigation amount on water fluxes at the groundwater table and water use of wheat. Irrigation and Drainage, 61(3), 348-356. https://doi.org/10.1002/ird.685
  • Kahlown, M. A., & Ashraf, M. (2005). Effect of shallow groundwater table on crop water requirements and crop yields. Agricultural Water Management, 76(1), 24-35. https://doi.org/10.1016/j.agwat.2005.01.005
  • Korkmaz, A., & Akınoğlu, G. (2021). Bitki beslemede toprak-kök etkileşimi. Ankara: Gece Kitaplığı Yayın Evi. Kiremit, M. S., Arslan, H., Sezer, İ., & Akay, H. (2022). Evaluating and Modeling of the Seedling Growth Ability of Wheat Seeds as Affected by Shallow-Saline Groundwater Conditions. Gesunde Pflanzen, 74(2), 357-369. https://doi.org/10.1007/s10343-021-00614-x
  • Kummu, M., Guillaume, J. H., de Moel, H., Eisner, S., Flörke, M., Porkka, M., Siebert, S., Veldkamp, T. I. E., & Ward, P. J. (2016). The world’s road to water scarcity: shortage and stress in the 20th century and pathways towards sustainability. Scientific Reports, 6(1), 1-16. https://doi.org/10.1038/srep38495
  • Mano, Y., Omori, F., Takamizo, T., Kindiger, B., Bird, R. M., & Loaisiga, C. H. (2006). Variation for root aerenchyma formation in flooded and non-flooded maize and teosinte seedlings. Plant and Soil, 281(1), 269-279. https://doi.org/10.1007/s11104-005-4268-y
  • Osman, H. M., & Arslan, H. (2022). Response of leaf nutrients, yield, growth parameters, and evapotranspiration of sweet corn (Zea mays L. saccharata Sturt) to shallow and saline groundwater depths. Archives of Agronomy and Soil Science, 1-16. https://doi.org/10.1080/03650340.2022.2140144.
  • Öner, F., & Sezer, İ. (2007). Işık ve sıcaklığın mısırda (Zea mays L.) büyüme parametreleri üzerine kantitatif etkileri. Tekirdağ Ziraat Fakültesi Dergisi, 4(1), 55-64.
  • Özalkan, Ç., Sepetoğlu, H., İhsanullah, D. A. U. R., & Şen, O. F. (2010). Relationship between some plant growth parameters and grain yield of chickpea (Cicer arietinum L.) during different growth stages. Turkish journal of field crops, 15(1), 79-83.
  • Palm, E., Klein, J. D., Mancuso, S., & Guidi Nissim, W. (2022). The physiological response of different brook willow (salix acmophylla boiss.) ecotypes to salinity. Plants, 11(6), 739. https://doi.org/10.3390/plants11060739
  • Ren, B., Zhang, J., Dong, S., Liu, P., & Zhao, B. (2016). Effects of waterlogging on leaf mesophyll cell ultrastructure and photosynthetic characteristics of summer maize. PloS one, 11(9), e0161424. https://doi.org/10.1371/journal.pone.0161424
  • Pereira, E. S., Silva, O. N., Felipe, J. P., Alves, G. A., & Lobato, A. K. (2015). Antioxidant enzymes efficiently control leaf and root cell damage in young Euterpe oleracea plants exposed to waterlogging. Indian Journal of Plant Physiology, 20(3), 213-219. https://doi.org/10.1007/s40502-015-0162-7
  • Sezer, İ., Akay, H., Mut, Z., Arslan, H., Öztürk, E., Erbaş Köse, Ö. D., & Kiremit, M. S. (2021). Effects of different water table depth and salinity levels on quality traits of bread wheat. Agriculture, 11(10), 969. https://doi.org/10.3390/agriculture11100969
  • Talebnejad, R., & Sepaskhah, A. R. (2015). Effect of different saline groundwater depths and irrigation water salinities on yield and water use of quinoa in lysimeter. Agricultural Water Management, 148, 177-188. https://doi.org/10.1016/j.agwat.2014.10.005
  • Temizel, K. E., & Tok, S. (2020). The effect of irrigation waters with different sodium values on some soil and plant characteristics in red cabbage (Brassica oleracea var. capitata f. rubra) plant. Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi, 6(1), 84-90. doi: 10.24180/ijaws.631837
  • Tok, S., & Temizel, K. E. (2022). Effects of ırrigation water in different salinity on yield and quality parameters of tobacco (Nicotiana tabacum L.) plant. Gesunde Pflanzen, 74(1), 9-16. https://doi.org/10.1007/s10343-021-00584-0
  • TÜİK. (2021). Tahıllar ve diğer bitkisel ürünlerin alan ve üretim miktarları. https://data.tuik.gov.tr/Kategori/GetKategori?p=tarim-111&dil=1 [Erişim tarihi: 25 Kasım 2022] Zhang, W., Zhu, J., Zhou, X., & Li, F. (2018). Effects of shallow groundwater table and fertilization level on soil physico-chemical properties, enzyme activities, and winter wheat yield. Agricultural Water Management, 208, 307-317. https://doi.org/10.1016/j.agwat.2018.06.039
  • Zhao, Y., Li, F., Wang, Y., & Jiang, R. (2020). Evaluating the effect of groundwater table on summer maize growth using the AquaCrop model. Environmental Modeling & Assessment, 25(3), 343-353. https://doi.org/10.1007/s10666-019-09680-y
  • Zhu, Y., Ren, L., Horton, R., Lü, H., Wang, Z., & Yuan, F. (2018). Estimating the contribution of groundwater to the root zone of winter wheat using root density distribution functions. Vadose Zone Journal, 17(1), 1-15. https://doi.org/10.2136/vzj2017.04.0075
There are 31 citations in total.

Details

Primary Language Turkish
Subjects Agronomy
Journal Section Agricultural Structural and Irrigation
Authors

Mehmet Kiremit 0000-0002-7394-303X

Hussein Mohamed Osman 0000-0003-0692-5920

Hakan Arslan 0000-0002-9677-6035

Publication Date April 25, 2023
Submission Date May 26, 2022
Acceptance Date February 20, 2023
Published in Issue Year 2023 Volume: 9 Issue: 1

Cite

APA Kiremit, M., Osman, H. M., & Arslan, H. (2023). Farklı Taban Suyu Derinliği ve Tuzluluğu Koşullarında Şeker Mısırı (Zea mays convar. Saccharata var. Rugose) Bitkisinin Büyüme Performansı. Uluslararası Tarım Ve Yaban Hayatı Bilimleri Dergisi, 9(1), 68-79. https://doi.org/10.24180/ijaws.1121575

17365       17368       17367        17366      17369     17370