Research Article
BibTex RIS Cite

Actinidia deliciosa’da Polen Tüplerinin Spermidin Uygulamalarına Verdiği Yanıtlar

Year 2024, Volume: 10 Issue: 1, 39 - 46, 29.04.2024
https://doi.org/10.24180/ijaws.1388346

Abstract

Bu çalışmada Actinidia deliciosa'da polen tüplerinin spermidin uygulamalarına (10 µM, 25 µM, 50 µM, 100 µM, 250 µM veya 500 µM) verdiği yanıtlar, polen çimlenme oranı, polen tüp uzunluğu, aktin filament organizasyonu, Ca+2, pH, reaktif oksijen türlerinin konsantrasyonu ve kalloz ve selüloz dağılımına odaklanarak incelenmiştir. Bulgulara göre tek olumlu etki 10 µM spermidine uygulamasından sonra tespit edilirken, en olumsuz akut etki 500 µM spermidine uygulamasından sonra tespit edilmiş ve ileri deneyler bu gruplarda yapılmıştır. 10 µM spermidin, apekste lokalize olan reaktif oksijen türlerinin konsantrasyonunu değiştirerek polen tüpü uzunluğunu arttırmıştır. 500 µM spermidin ise apekste lokalize olan Ca+2, pH ve reaktif oksijen türlerinin konsantrasyonunu değiştirerek polen tüpü uzunluğunu azaltmıştır. Bulguların poliaminlerin polen tüpleri üzerindeki etkilerinin anlaşılmasına katkıda bulunabileceği düşünülmektedir.

Project Number

1919B012201192.

References

  • Aloisi, I., Cai, G., Serafini-Fracassini, D., & Del Duca, S. (2016). Polyamines in pollen: from microsporogenesis to fertilization. Frontiers in Plant Science, 7, 155. https://doi.org/10.3389/fpls.2016.00155 Aloisi, I., Cai, G., Faleri, C., Navazio, L., Serafini-Fracassini, D., & Del Duca, S. (2017). Spermine regulates pollen tube growth by modulating Ca2+-dependent actin organization and cell wall structure. Frontiers in Plant Science, 8, 1701. https://doi.org/10.3389/fpls.2017.01701
  • Aloisi, I., Piccini, C., Cai, G., & Del Duca, S. (2022). Male fertility under environmental stress: Do polyamines act as pollen tube growth protectants?. International Journal of Molecular Sciences, 23(3), 1874. https://doi.org/10.3390/ijms23031874
  • Benko, P., Jee, S., Kaszler, N., Fehér, A., & Gémes, K. (2020). Polyamines treatment during pollen germination and pollen tube elongation in tobacco modulate reactive oxygen species and nitric oxide homeostasis. Journal Of Plant Physiology, 244, 153085. https://doi.org/10.1016/j.jplph.2019.153085
  • Boudaoud, A., Burian, A., Borowska-Wykręt, D., Uyttewaal, M., Wrzalik, R., Kwiatkowska, D., & Hamant, O. (2014). FibrilTool, an ImageJ plug-in to quantify fibrillar structures in raw microscopy images. Nature Protocols, 9(2), 457-463. https://doi.org/10.1038/nprot.2014.024
  • Cai, G., Parrotta, L., & Cresti, M. (2015). Organelle trafficking, the cytoskeleton, and pollen tube growth. Journal of Integrative Plant Biology, 57(1), 63-78. https://doi.org/10.1111/jipb.12289
  • Çetinbaş-Genç, A., Cai, G., & Del Duca, S. (2020). Treatment with spermidine alleviates the effects of concomitantly applied cold stress by modulating Ca2+, pH and ROS homeostasis, actin filament organization and cell wall deposition in pollen tubes of Camellia sinensis. Plant Physiology and Biochemistry, 156, 578-590. https://doi.org/10.1016/j.plaphy.2020.10.008
  • Dai, Q., Shaobing, P., Chavez, A. Q., & Vergara, B. S. (1994). Intraspecific responses of 188 rice cultivars to enhanced UVB radiation. Environmental and Experimental Botany, 34(4), 433-442. https://doi.org/10.1016/0098-8472(94)90026-4
  • Del Duca, S., Bregoli, A. M., Bergamini, C., & Serafini-Fracassini, D. (1997). Transglutaminase-catalyzed modification of cytoskeletal proteins by polyamines during the germination of Malus domestica pollen. Sexual Plant Reproduction, 10, 89-95. https://doi.org/10.1007/s004970050072
  • Del Duca, S., Faleri, C., Iorio, R. A., Cresti, M., Serafini-Fracassini, D., & Cai, G. (2013). Distribution of transglutaminase in pear pollen tubes in relation to cytoskeleton and membrane dynamics. Plant Physiology, 161(4), 1706-1721. https://doi.org/10.1104/pp.112.212225
  • Derksen, J., Knuiman, B., Hoedemaekers, K., Guyon, A., Bonhomme, S., & Pierson, E. S. (2002). Growth and cellular organization of Arabidopsis pollen tubes in vitro. Sexual Plant Reproduction, 15, 133-139. https://doi.org/10.1007/s00497-002-0149-1
  • Dutta, S. K., Layek, J., Yadav, A., Das, S. K., Rymbai, H., Mandal, S., Shana, S., Bhutia, T.L., Devi, E. L., Patel, V. B., Laha, R., & Mishra, V. K. (2023). Improvement of rooting and growth in kiwifruit (Actinidia deliciosa) cuttings with organic biostimulants. Heliyon, 9(7). https://doi.org/10.1016/j.heliyon.2023.e17815
  • Garg, A. K., Kaushal, R., Rana, V. S., & Singh, P. (2023). Assessment of yield, quality and economics of kiwifruit (Actinidia deliciosa cv. Allison) production as influenced by integrated nitrogen management strategies in Indian Lower Himalayas. Journal of Soil Science and Plant Nutrition, 1-19. https://doi.org/10.1007/s42729-023-01429-7
  • Güçlü, S. F., Öncü, Z., & Koyuncu, F. (2020). Pollen performance modelling with an artificial neural network on commercial stone fruit cultivars. Horticulture, Environment, and Biotechnology, 61(1), 61-67. https://doi.org/10.1007/s13580-019-00208-7
  • Jinming, X. U., Yihong, C. H. A. N. G., Han, G. O. N. G., Wenfang, G. O. N. G., & Deyi, Y. U. A. N. (2023). Effects of different exogenous substances on pollen germination and pollen tube growth of Camellia oleifera. Acta Agriculturae Zhejiangensis, 35(4), 789.
  • Kapoor, K., & Geitmann, A. (2023). Pollen tube invasive growth is promoted by callose. Plant Reproduction, 1-15. https://doi.org/10.1007/s00497-023-00458-7
  • Koubouris, G. C., Metzidakis, I. T., & Vasilakakis, M. D. (2009). Impact of temperature on olive (Olea europaea L.) pollen performance in relation to relative humidity and genotype. Environmental and Experimental Botany, 67(1), 209-214. https://doi.org/10.1016/j.envexpbot.2009.06.002
  • Lovy-Wheeler, A., Wilsen, K. L., Baskin, T. I., & Hepler, P. K. (2005). Enhanced fixation reveals the apical cortical fringe of actin filaments as a consistent feature of the pollen tube. Planta, 221, 95-104. https://doi.org/10.1007/s00425-004-1423-2
  • Malho, R., Camacho, L., & Moutinho, A. (2000). Signalling pathways in pollen tube growth and reorientation. Annals of Botany, 85, 59-68. https://doi.org/10.1006/anbo.1999.0991
  • Nie, S., Zheng, S., Lyu, C., Cui, S., Huo, J., & Zhang, L. (2023). Calcium/calmodulin modulates pollen germination and pollen tube growth and self-incompatibility response in Chinese cabbage (Brassica rapa L.). Scientia Horticulturae, 308, 111607. https://doi.org/10.1016/j.scienta.2022.111607
  • Parrotta, L., Faleri, C., Del Casino, C., Mareri, L., Aloisi, I., Guerriero, G., Hausman, J. F., Del Duca, S., & Cai, G. (2022). Biochemical and cytological interactions between callose synthase and microtubules in the tobacco pollen tube. Plant Cell Reports, 41(5), 1301-1318. https://doi.org/10.1007/s00299-022-02860-3
  • Potocky, M., Pejchar, P., Gutkowska, M., Jiménez-Quesada, M. J., Potocká, A., de Dios Alché, J., Kost, B., & Žárský, V. (2012). NADPH oxidase activity in pollen tubes is affected by calcium ions, signaling phospholipids and Rac/Rop GTPases. Journal of Plant Physiology, 169(16), 1654-1663. https://doi.org/10.1016/j.jplph.2012.05.014
  • Serrazina, S., Dias, F. V., & Malhó, R. (2014). Characterization of FAB 1 phosphatidylinositol kinases in Arabidopsis pollen tube growth and fertilization. New Phytologist, 203(3), 784-793. https://doi.org/10.1111/nph.12836
  • Song, J., Nada, K., & Tachibana, S. (1999). Ameliorative effect of polyamines on the high temperature inhibition of in vitro pollen germination in tomato (Lycopersicon esculentum Mill.). Scientia Horticulturae, 80(3-4), 203-212. https://doi.org/10.1016/S0304-4238(98)00254-4
  • Sorkheh, K., Shiran, B., Rouhi, V., Khodambashi, M., Wolukau, J. N., & Ercisli, S. (2011). Response of in vitro pollen germination and pollen tube growth of almond (Prunus dulcis Mill.) to temperature, polyamines and polyamine synthesis inhibitor. Biochemical Systematics and Ecology, 39(4-6), 749-757. https://doi.org/10.1016/j.bse.2011.06.015
  • Sorkheh, K., Azimkhani, R., Mehri, N., Chaleshtori, M. H., Halász, J., Ercisli, S., & Koubouris, G. C. (2018). Interactive effects of temperature and genotype on almond (Prunus dulcis L.) pollen germination and tube length. Scientia horticulturae, 227, 162-168. https://doi.org/10.1016/j.scienta.2017.09.037
  • Tang, C., Wang, P., Zhu, X., Qi, K., Xie, Z., Zhang, H., Li, X., Gao, H., Gu, T., Gu, C., Li, S., De Graff, B. H. J, Zhang, S, & Wu, J. (2023). Acetylation of inorganic pyrophosphatase by S-RNase signaling induces pollen tube tip swelling by repressing pectin methylesterase. The Plant Cell, 162. https://doi.org/10.1093/plcell/koad162
  • Vogler, F., Schmalzl, C., Englhart, M., Bircheneder, M., & Sprunck, S. (2014). Brassinosteroids promote Arabidopsis pollen germination and growth. Plant Reproduction, 27, 153-167. https://doi.org/10.1007/s00497-014-0247-x
  • Wang, Q., Lu, L., Wu, X., Li, Y., & Lin, J. (2003). Boron influences pollen germination and pollen tube growth in Picea meyeri. Tree physiology, 23(5), 345-351.https://doi.org/10.1093/treephys/23.5.345
  • Wolukau, J. N., Zhang, S., Xu, G., & Chen, D. (2004). The effect of temperature, polyamines and polyamine synthesis inhibitor on in vitro pollen germination and pollen tube growth of Prunus mume. Scientia Horticulturae, 99(3-4), 289-299. https://doi.org/10.1016/S0304-4238(03)00112-2
  • Wu, J., Shang, Z., Wu, J., Jiang, X., Moschou, P. N., Sun, W., Roubelakis-Angelakis, K. A., & Zhang, S. (2010). Spermidine oxidase‐derived H2O2 regulates pollen plasma membrane hyperpolarization‐activated Ca2+‐permeable channels and pollen tube growth. The Plant Journal, 63(6), 1042-1053. https://doi.org/10.1111/j.1365-313X.2010.04301.x
  • Zhang, R., Xu, Y., Yi, R., Shen, J., & Huang, S. (2023). Actin cytoskeleton in the control of vesicle transport, cytoplasmic organization and pollen tube tip growth. Plant Physiology, 203. https://doi.org/10.1093/plphys/kiad203
  • Zhao, W., Hou, Q., Qi, Y., Wu, S., & Wan, X. (2023). Structural and molecular basis of pollen germination. Plant Physiology and Biochemistry, 108042. https://doi.org/10.1016/j.plaphy.2023.108042

The Responses of Pollen Tubes to Spermidine Treatments in Actinidia deliciosa

Year 2024, Volume: 10 Issue: 1, 39 - 46, 29.04.2024
https://doi.org/10.24180/ijaws.1388346

Abstract

In this study, the responses of pollen tubes to spermidine treatments (10 µM, 25 µM, 50 µM, 100 µM, 250 µM, or 500 µM) were investigated in Actinidia deliciosa, by focusing on pollen germination rate, pollen tube length, organizations of actin filaments, concentrations of Ca+2, pH, reactive oxygen species and distributions of callose and cellulose. According to findings, the only positive effect was detected after 10 µM spermidine treatment while the most negative acute effect was detected after 500 µM spermidine treatment and, further experiments were done in these groups. 10 µM spermidine increased the pollen tube length by changing the concentration of apex localized reactive oxygen species. 500 µM spermidine decreased the pollen tube length by changing the apex localized Ca+2, pH, and reactive oxygen species concentration. Findings would contribute to the understanding of the effects of polyamines on pollen tubes.

Supporting Institution

TÜBİTAK

Project Number

1919B012201192.

Thanks

This work was supported by the 2209-A-Research Project Support Programme for Undergraduate Students with project identification number 1919B012201192.

References

  • Aloisi, I., Cai, G., Serafini-Fracassini, D., & Del Duca, S. (2016). Polyamines in pollen: from microsporogenesis to fertilization. Frontiers in Plant Science, 7, 155. https://doi.org/10.3389/fpls.2016.00155 Aloisi, I., Cai, G., Faleri, C., Navazio, L., Serafini-Fracassini, D., & Del Duca, S. (2017). Spermine regulates pollen tube growth by modulating Ca2+-dependent actin organization and cell wall structure. Frontiers in Plant Science, 8, 1701. https://doi.org/10.3389/fpls.2017.01701
  • Aloisi, I., Piccini, C., Cai, G., & Del Duca, S. (2022). Male fertility under environmental stress: Do polyamines act as pollen tube growth protectants?. International Journal of Molecular Sciences, 23(3), 1874. https://doi.org/10.3390/ijms23031874
  • Benko, P., Jee, S., Kaszler, N., Fehér, A., & Gémes, K. (2020). Polyamines treatment during pollen germination and pollen tube elongation in tobacco modulate reactive oxygen species and nitric oxide homeostasis. Journal Of Plant Physiology, 244, 153085. https://doi.org/10.1016/j.jplph.2019.153085
  • Boudaoud, A., Burian, A., Borowska-Wykręt, D., Uyttewaal, M., Wrzalik, R., Kwiatkowska, D., & Hamant, O. (2014). FibrilTool, an ImageJ plug-in to quantify fibrillar structures in raw microscopy images. Nature Protocols, 9(2), 457-463. https://doi.org/10.1038/nprot.2014.024
  • Cai, G., Parrotta, L., & Cresti, M. (2015). Organelle trafficking, the cytoskeleton, and pollen tube growth. Journal of Integrative Plant Biology, 57(1), 63-78. https://doi.org/10.1111/jipb.12289
  • Çetinbaş-Genç, A., Cai, G., & Del Duca, S. (2020). Treatment with spermidine alleviates the effects of concomitantly applied cold stress by modulating Ca2+, pH and ROS homeostasis, actin filament organization and cell wall deposition in pollen tubes of Camellia sinensis. Plant Physiology and Biochemistry, 156, 578-590. https://doi.org/10.1016/j.plaphy.2020.10.008
  • Dai, Q., Shaobing, P., Chavez, A. Q., & Vergara, B. S. (1994). Intraspecific responses of 188 rice cultivars to enhanced UVB radiation. Environmental and Experimental Botany, 34(4), 433-442. https://doi.org/10.1016/0098-8472(94)90026-4
  • Del Duca, S., Bregoli, A. M., Bergamini, C., & Serafini-Fracassini, D. (1997). Transglutaminase-catalyzed modification of cytoskeletal proteins by polyamines during the germination of Malus domestica pollen. Sexual Plant Reproduction, 10, 89-95. https://doi.org/10.1007/s004970050072
  • Del Duca, S., Faleri, C., Iorio, R. A., Cresti, M., Serafini-Fracassini, D., & Cai, G. (2013). Distribution of transglutaminase in pear pollen tubes in relation to cytoskeleton and membrane dynamics. Plant Physiology, 161(4), 1706-1721. https://doi.org/10.1104/pp.112.212225
  • Derksen, J., Knuiman, B., Hoedemaekers, K., Guyon, A., Bonhomme, S., & Pierson, E. S. (2002). Growth and cellular organization of Arabidopsis pollen tubes in vitro. Sexual Plant Reproduction, 15, 133-139. https://doi.org/10.1007/s00497-002-0149-1
  • Dutta, S. K., Layek, J., Yadav, A., Das, S. K., Rymbai, H., Mandal, S., Shana, S., Bhutia, T.L., Devi, E. L., Patel, V. B., Laha, R., & Mishra, V. K. (2023). Improvement of rooting and growth in kiwifruit (Actinidia deliciosa) cuttings with organic biostimulants. Heliyon, 9(7). https://doi.org/10.1016/j.heliyon.2023.e17815
  • Garg, A. K., Kaushal, R., Rana, V. S., & Singh, P. (2023). Assessment of yield, quality and economics of kiwifruit (Actinidia deliciosa cv. Allison) production as influenced by integrated nitrogen management strategies in Indian Lower Himalayas. Journal of Soil Science and Plant Nutrition, 1-19. https://doi.org/10.1007/s42729-023-01429-7
  • Güçlü, S. F., Öncü, Z., & Koyuncu, F. (2020). Pollen performance modelling with an artificial neural network on commercial stone fruit cultivars. Horticulture, Environment, and Biotechnology, 61(1), 61-67. https://doi.org/10.1007/s13580-019-00208-7
  • Jinming, X. U., Yihong, C. H. A. N. G., Han, G. O. N. G., Wenfang, G. O. N. G., & Deyi, Y. U. A. N. (2023). Effects of different exogenous substances on pollen germination and pollen tube growth of Camellia oleifera. Acta Agriculturae Zhejiangensis, 35(4), 789.
  • Kapoor, K., & Geitmann, A. (2023). Pollen tube invasive growth is promoted by callose. Plant Reproduction, 1-15. https://doi.org/10.1007/s00497-023-00458-7
  • Koubouris, G. C., Metzidakis, I. T., & Vasilakakis, M. D. (2009). Impact of temperature on olive (Olea europaea L.) pollen performance in relation to relative humidity and genotype. Environmental and Experimental Botany, 67(1), 209-214. https://doi.org/10.1016/j.envexpbot.2009.06.002
  • Lovy-Wheeler, A., Wilsen, K. L., Baskin, T. I., & Hepler, P. K. (2005). Enhanced fixation reveals the apical cortical fringe of actin filaments as a consistent feature of the pollen tube. Planta, 221, 95-104. https://doi.org/10.1007/s00425-004-1423-2
  • Malho, R., Camacho, L., & Moutinho, A. (2000). Signalling pathways in pollen tube growth and reorientation. Annals of Botany, 85, 59-68. https://doi.org/10.1006/anbo.1999.0991
  • Nie, S., Zheng, S., Lyu, C., Cui, S., Huo, J., & Zhang, L. (2023). Calcium/calmodulin modulates pollen germination and pollen tube growth and self-incompatibility response in Chinese cabbage (Brassica rapa L.). Scientia Horticulturae, 308, 111607. https://doi.org/10.1016/j.scienta.2022.111607
  • Parrotta, L., Faleri, C., Del Casino, C., Mareri, L., Aloisi, I., Guerriero, G., Hausman, J. F., Del Duca, S., & Cai, G. (2022). Biochemical and cytological interactions between callose synthase and microtubules in the tobacco pollen tube. Plant Cell Reports, 41(5), 1301-1318. https://doi.org/10.1007/s00299-022-02860-3
  • Potocky, M., Pejchar, P., Gutkowska, M., Jiménez-Quesada, M. J., Potocká, A., de Dios Alché, J., Kost, B., & Žárský, V. (2012). NADPH oxidase activity in pollen tubes is affected by calcium ions, signaling phospholipids and Rac/Rop GTPases. Journal of Plant Physiology, 169(16), 1654-1663. https://doi.org/10.1016/j.jplph.2012.05.014
  • Serrazina, S., Dias, F. V., & Malhó, R. (2014). Characterization of FAB 1 phosphatidylinositol kinases in Arabidopsis pollen tube growth and fertilization. New Phytologist, 203(3), 784-793. https://doi.org/10.1111/nph.12836
  • Song, J., Nada, K., & Tachibana, S. (1999). Ameliorative effect of polyamines on the high temperature inhibition of in vitro pollen germination in tomato (Lycopersicon esculentum Mill.). Scientia Horticulturae, 80(3-4), 203-212. https://doi.org/10.1016/S0304-4238(98)00254-4
  • Sorkheh, K., Shiran, B., Rouhi, V., Khodambashi, M., Wolukau, J. N., & Ercisli, S. (2011). Response of in vitro pollen germination and pollen tube growth of almond (Prunus dulcis Mill.) to temperature, polyamines and polyamine synthesis inhibitor. Biochemical Systematics and Ecology, 39(4-6), 749-757. https://doi.org/10.1016/j.bse.2011.06.015
  • Sorkheh, K., Azimkhani, R., Mehri, N., Chaleshtori, M. H., Halász, J., Ercisli, S., & Koubouris, G. C. (2018). Interactive effects of temperature and genotype on almond (Prunus dulcis L.) pollen germination and tube length. Scientia horticulturae, 227, 162-168. https://doi.org/10.1016/j.scienta.2017.09.037
  • Tang, C., Wang, P., Zhu, X., Qi, K., Xie, Z., Zhang, H., Li, X., Gao, H., Gu, T., Gu, C., Li, S., De Graff, B. H. J, Zhang, S, & Wu, J. (2023). Acetylation of inorganic pyrophosphatase by S-RNase signaling induces pollen tube tip swelling by repressing pectin methylesterase. The Plant Cell, 162. https://doi.org/10.1093/plcell/koad162
  • Vogler, F., Schmalzl, C., Englhart, M., Bircheneder, M., & Sprunck, S. (2014). Brassinosteroids promote Arabidopsis pollen germination and growth. Plant Reproduction, 27, 153-167. https://doi.org/10.1007/s00497-014-0247-x
  • Wang, Q., Lu, L., Wu, X., Li, Y., & Lin, J. (2003). Boron influences pollen germination and pollen tube growth in Picea meyeri. Tree physiology, 23(5), 345-351.https://doi.org/10.1093/treephys/23.5.345
  • Wolukau, J. N., Zhang, S., Xu, G., & Chen, D. (2004). The effect of temperature, polyamines and polyamine synthesis inhibitor on in vitro pollen germination and pollen tube growth of Prunus mume. Scientia Horticulturae, 99(3-4), 289-299. https://doi.org/10.1016/S0304-4238(03)00112-2
  • Wu, J., Shang, Z., Wu, J., Jiang, X., Moschou, P. N., Sun, W., Roubelakis-Angelakis, K. A., & Zhang, S. (2010). Spermidine oxidase‐derived H2O2 regulates pollen plasma membrane hyperpolarization‐activated Ca2+‐permeable channels and pollen tube growth. The Plant Journal, 63(6), 1042-1053. https://doi.org/10.1111/j.1365-313X.2010.04301.x
  • Zhang, R., Xu, Y., Yi, R., Shen, J., & Huang, S. (2023). Actin cytoskeleton in the control of vesicle transport, cytoplasmic organization and pollen tube tip growth. Plant Physiology, 203. https://doi.org/10.1093/plphys/kiad203
  • Zhao, W., Hou, Q., Qi, Y., Wu, S., & Wan, X. (2023). Structural and molecular basis of pollen germination. Plant Physiology and Biochemistry, 108042. https://doi.org/10.1016/j.plaphy.2023.108042
There are 32 citations in total.

Details

Primary Language English
Subjects Pollination Biology and Systems
Journal Section Horticultural Sciences
Authors

Melse Su Bilgili 0000-0002-2062-7295

Özkan Kilin 0000-0002-9283-4576

Aslıhan Çetinbaş Genç 0000-0001-5125-9395

Project Number 1919B012201192.
Early Pub Date April 26, 2024
Publication Date April 29, 2024
Submission Date November 9, 2023
Acceptance Date January 22, 2024
Published in Issue Year 2024 Volume: 10 Issue: 1

Cite

APA Bilgili, M. S., Kilin, Ö., & Çetinbaş Genç, A. (2024). The Responses of Pollen Tubes to Spermidine Treatments in Actinidia deliciosa. Uluslararası Tarım Ve Yaban Hayatı Bilimleri Dergisi, 10(1), 39-46. https://doi.org/10.24180/ijaws.1388346

17365       17368       17367        17366      17369     17370