An Analysis on Radiation Protection Abilities of Different Colored Obsidians
Year 2023,
, 170 - 176, 30.06.2023
Zeynep Aygun
,
Murat Aygün
Abstract
Obsidians are naturally occurring structures which have great interest and are widely used in engineering, nuclear and medical applications. These glassy volcanic rocks are formed as a result of volcanic activity and lava eruptions. In the present study, it is aimed to determine the radiation protection parameters of obsidians with different colors in order to examine the radiation shielding capabilities of the samples. The parameters were determined in the range of 4keV-100 GeV photon energies by using Phy-X/PSD code. In order to make a meaningful analyze for the radiation shielding potentials of the obsidians, the calculated mass attenuation and linear attenuation coefficients were compared with ordinary concrete which can be widely used as shielding material in the nuclear application.
References
- [1] Akkurt, I., Akyıldırım, H., Mavi, B., Kılıncarslan, S., Basyigit, C., (2010). Radiation shielding of concrete containing zeolite. Radiat Measur. 45:827−830. DOI: 10.1016/j.radmeas.2010.04.012
- [2] Akkurt, I., Tekin, H.O. (2020). Radiological parameters of bismuth oxide glasses using the Phy-X/PSD software. Emerging Mater. Res. 9:1020-1027. DOI: 10.1680/jemmr.20.00209
- [3] Alım, B. (2020). A comprehensive study on radiation shielding characteristics of Tin Silver, Manganin R, Hastelloy B, Hastelloy X and Dilver P alloys. Appl. Phys. A 126:262. DOI:10.1007/s00339-020-3442-7
- [4] Gur, A., Artıg, B., Çakır, T. (2017). Photon attenuatıon propertıes of concretes contaınıng magnetıte and lımonıte ores. Physicochem. Probl. Miner. Process. 53(1):184−191. DOI: 10.5277/ppmp170115
- [5] Kurudirek, M., Türkmen, I., Özdemir, Y. (2009). A study of photon interaction in some building materials: High-volume admixture of blast furnace slag into Portland cement. Radiat. Phys. Chem. 78:751–759. DOI: 10.1016/j.radphyschem.2009.03.070
- [6] Aygun, Z., Aygun, M. (2022). A study on usability of Ahlat ignimbrites and pumice as radiation shielding materials, by using EpiXS code. Inter. J. Environ. Sci. Tech. 19: 5675–5688. DOI: 10.1007/s13762-021-03530-9
- [7]Aygun, Z., Yarbasi, N., Aygun, M. (2021). Spectroscopic and radiation shielding features of Nemrut, Pasinler, Sarıkamıs and Ikizdere obsidians in Turkey: Experimental and theoretical study. Ceramics Inter.47:34207–34217. DOI: 10.1016/j.ceramint.2021.08.330
- [8] Aygun, Z., Aygun, M., Yarbasi, N. (2021). A study on radiation shielding potentials of green and red clayey soils in Turkey reinforced with marble dust and waste tire. J. New Results Sci. 10:46-59. DOI: 10.54187/jnrs.986038
- [9]Safaryan, A., Sarkisyan, T., Paytyan, T., Baghdagyulyan, A. (2020). The origin and bloating of the obsidian. E3S Web of Conferences 175:12020. DOI: 10.1051/e3sconf/202017512020
- [10] Aygun, Z., Aygun, M. (2022). Theoretical evaluation on radiation shielding features of Van-Ercis¸and Rize-˙lkizdere (Türkiye) obsidians by using Phy-X/PSD code. Sigma J. Eng. Nat. Sci. 40(4): 845–854. DOI: 10.14744/sigma.2022.00100
- [11] Küçük, N., Gezer O. (20170). Doğal Siyah Obsidyen Cevherleri İçin Yığılma Faktörlerinin Belirlenmesi. AKU J. Sci. Eng. 17(3): 872–880. DOI: 10.5578/fmbd.66223
- 12] Acikgoz, A., Ceyhan, G.,Aktas, B., Yalcin, S., Demircan, G. (2021). Luminescent, structural and mechanical properties of erbium oxide doped natural obsidian glasses. J. Non-Crystall. Solids 572:121104. DOI:10.1016/j.jnoncrysol.2021.121104
- [13] Duran, S.U., Küçükömeroğlu, B., Çiriş, A., Ersoy, H. (2022). Gamma-ray absorbing characteristic of obsidian rocks as a potential material for radiation protection. Radiat. Phys. Chem. 199:110309. DOI:10.1016/j.radphyschem.2022.110309
- [14] Sakar, E., Özpolat, Ö.F., Alım, B., Sayyed, M.I., Kurudirek, M. (2020). Phy-X / PSD: Development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiat Phys Chem, 166:1-12. DOI: 10.1016/j.radphyschem.2019.108496
- [15] Jackson, D.F., Hawkes, D.J. (1981). X-ray attenuation coefficients of elements and mixtures. Phys. Reports 70:169–233. DOI: 10.1016/0370-1573(81)90014-4
- [16] Han, I., Demir, L. (2009). Determination of mass attenuation coefficients, effective atomic and electron numbers for Cr, Fe and Ni alloys at different energies. Nucl Instr Methods Phys Res Sec B 267:3–8. DOI: 10.1016/j.nimb.2008.10.004
- [17] Han, I., Demir, L. (2009). Studies on effective atomic numbers, electron densities from mass attenuation coefficients in TixCo1-x and CoxCu1-x alloys. Nucl Instr Methods B 267:3505–3510. DOI: 10.1016/j.nimb.2009.08.022
- [18] Manjunatha, H.C. (2017). A study of gamma attenuation parameters in poly methyl methacrylate and Kapton. Radiat Phys Chem, 137:254–259. DOI: 10.1016/j.radphyschem.2016.01.024
- [19] Şakar, E. (2020). Radiat. Phys. Chem. 172:1-13. DOI: 10.1016/j.radphyschem.2020.108778
- [20] Wood, J. (2013). Computational methods in reactor shielding, Elsevier.
- [21] Alım, B. (2020). Determination of Radiation Protection Features of the Ag2O Doped Boro-Tellurite Glasses Using Phy-X / PSD Software. J. Ins. Sci. Tech. 10(1):202-213. DOI: 10.21597/jist.640027
- [22] Bashter, I.I. (1997). Calculation of radiation attenuation coefficients for shielding concretes. Annl. Nucl. Energy 24(17):1389-1401. DOI: 10.1016/S0306-4549(97)00003-0
Year 2023,
, 170 - 176, 30.06.2023
Zeynep Aygun
,
Murat Aygün
References
- [1] Akkurt, I., Akyıldırım, H., Mavi, B., Kılıncarslan, S., Basyigit, C., (2010). Radiation shielding of concrete containing zeolite. Radiat Measur. 45:827−830. DOI: 10.1016/j.radmeas.2010.04.012
- [2] Akkurt, I., Tekin, H.O. (2020). Radiological parameters of bismuth oxide glasses using the Phy-X/PSD software. Emerging Mater. Res. 9:1020-1027. DOI: 10.1680/jemmr.20.00209
- [3] Alım, B. (2020). A comprehensive study on radiation shielding characteristics of Tin Silver, Manganin R, Hastelloy B, Hastelloy X and Dilver P alloys. Appl. Phys. A 126:262. DOI:10.1007/s00339-020-3442-7
- [4] Gur, A., Artıg, B., Çakır, T. (2017). Photon attenuatıon propertıes of concretes contaınıng magnetıte and lımonıte ores. Physicochem. Probl. Miner. Process. 53(1):184−191. DOI: 10.5277/ppmp170115
- [5] Kurudirek, M., Türkmen, I., Özdemir, Y. (2009). A study of photon interaction in some building materials: High-volume admixture of blast furnace slag into Portland cement. Radiat. Phys. Chem. 78:751–759. DOI: 10.1016/j.radphyschem.2009.03.070
- [6] Aygun, Z., Aygun, M. (2022). A study on usability of Ahlat ignimbrites and pumice as radiation shielding materials, by using EpiXS code. Inter. J. Environ. Sci. Tech. 19: 5675–5688. DOI: 10.1007/s13762-021-03530-9
- [7]Aygun, Z., Yarbasi, N., Aygun, M. (2021). Spectroscopic and radiation shielding features of Nemrut, Pasinler, Sarıkamıs and Ikizdere obsidians in Turkey: Experimental and theoretical study. Ceramics Inter.47:34207–34217. DOI: 10.1016/j.ceramint.2021.08.330
- [8] Aygun, Z., Aygun, M., Yarbasi, N. (2021). A study on radiation shielding potentials of green and red clayey soils in Turkey reinforced with marble dust and waste tire. J. New Results Sci. 10:46-59. DOI: 10.54187/jnrs.986038
- [9]Safaryan, A., Sarkisyan, T., Paytyan, T., Baghdagyulyan, A. (2020). The origin and bloating of the obsidian. E3S Web of Conferences 175:12020. DOI: 10.1051/e3sconf/202017512020
- [10] Aygun, Z., Aygun, M. (2022). Theoretical evaluation on radiation shielding features of Van-Ercis¸and Rize-˙lkizdere (Türkiye) obsidians by using Phy-X/PSD code. Sigma J. Eng. Nat. Sci. 40(4): 845–854. DOI: 10.14744/sigma.2022.00100
- [11] Küçük, N., Gezer O. (20170). Doğal Siyah Obsidyen Cevherleri İçin Yığılma Faktörlerinin Belirlenmesi. AKU J. Sci. Eng. 17(3): 872–880. DOI: 10.5578/fmbd.66223
- 12] Acikgoz, A., Ceyhan, G.,Aktas, B., Yalcin, S., Demircan, G. (2021). Luminescent, structural and mechanical properties of erbium oxide doped natural obsidian glasses. J. Non-Crystall. Solids 572:121104. DOI:10.1016/j.jnoncrysol.2021.121104
- [13] Duran, S.U., Küçükömeroğlu, B., Çiriş, A., Ersoy, H. (2022). Gamma-ray absorbing characteristic of obsidian rocks as a potential material for radiation protection. Radiat. Phys. Chem. 199:110309. DOI:10.1016/j.radphyschem.2022.110309
- [14] Sakar, E., Özpolat, Ö.F., Alım, B., Sayyed, M.I., Kurudirek, M. (2020). Phy-X / PSD: Development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiat Phys Chem, 166:1-12. DOI: 10.1016/j.radphyschem.2019.108496
- [15] Jackson, D.F., Hawkes, D.J. (1981). X-ray attenuation coefficients of elements and mixtures. Phys. Reports 70:169–233. DOI: 10.1016/0370-1573(81)90014-4
- [16] Han, I., Demir, L. (2009). Determination of mass attenuation coefficients, effective atomic and electron numbers for Cr, Fe and Ni alloys at different energies. Nucl Instr Methods Phys Res Sec B 267:3–8. DOI: 10.1016/j.nimb.2008.10.004
- [17] Han, I., Demir, L. (2009). Studies on effective atomic numbers, electron densities from mass attenuation coefficients in TixCo1-x and CoxCu1-x alloys. Nucl Instr Methods B 267:3505–3510. DOI: 10.1016/j.nimb.2009.08.022
- [18] Manjunatha, H.C. (2017). A study of gamma attenuation parameters in poly methyl methacrylate and Kapton. Radiat Phys Chem, 137:254–259. DOI: 10.1016/j.radphyschem.2016.01.024
- [19] Şakar, E. (2020). Radiat. Phys. Chem. 172:1-13. DOI: 10.1016/j.radphyschem.2020.108778
- [20] Wood, J. (2013). Computational methods in reactor shielding, Elsevier.
- [21] Alım, B. (2020). Determination of Radiation Protection Features of the Ag2O Doped Boro-Tellurite Glasses Using Phy-X / PSD Software. J. Ins. Sci. Tech. 10(1):202-213. DOI: 10.21597/jist.640027
- [22] Bashter, I.I. (1997). Calculation of radiation attenuation coefficients for shielding concretes. Annl. Nucl. Energy 24(17):1389-1401. DOI: 10.1016/S0306-4549(97)00003-0