Research Article
BibTex RIS Cite
Year 2020, Volume: 12 Issue: 3, 88 - 98, 13.12.2020
https://doi.org/10.24107/ijeas.790858

Abstract

References

  • Krawczuk, M., Ostachowicz W., Zak, A., Modal analysis of cracked, unidirectional composite beam, Composites Part B: Engineering, 28(5-6), 641-650, 1997.
  • Shen, H.S., Thermal postbuckling behavior of imperfect shear deformable laminated plates with temperature-dependent properties. Computer Methods in Applied Mechanics and Engineering, 190(40-41), 5377-5390, 2001.
  • Sayman, O., Elastic-plastic and residual stresses in symmetric aluminum metal-matrix laminated plates under a linear thermal loading. Journal of Thermal Stresses, 26(4), 391-406, 2003.
  • Shukla, K.K., Huang, J.H., Nath, Y., Thermal postbuckling of laminated composite plates with temperature dependent properties. Journal of Engineering Mechanics, 130(7), 818-825, 2004.
  • Emery, T.R., Dulieu-Barton, J.M., Earl, J.S., Cunningham, P.R. A generalised approach to the calibration of orthotropic materials for thermoelastic stress analysis. Composites Science and Technology, 68(3-4), 743-752, 2008.
  • Shen, H.S., Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments.  Composite Structures, 91(1), 9-19, 2009.
  • Akgoz, B., Civalek, O., Nonlinear vibration analysis of laminated plates resting on nonlinear two-parameters elastic foundations. Steel and Composite Structures, 11(5), 403-421, 2011.
  • Akgöz, B., Civalek, Ö.,Thermo-mechanical buckling behavior of functionally graded microbeams embedded in elastic medium. International Journal of Engineering Science, 85, 90-104, 2014.
  • Akgöz, B., Civalek, Ö., Modeling and analysis of micro-sized plates resting on elastic medium using the modified couple stress theory. Meccanica, 48(4), 863-873, 2013.
  • Akgöz, B., Civalek, Ö., Bending analysis of embedded carbon nanotubes resting on an elastic foundation using strain gradient theory. Acta Astronautica, 119, 1-12, 2016.
  • Kishore, M.H., Singh, B.N., Pandit, M.K., Nonlinear static analysis of smart laminated composite plate. Aerospace Science and Technology, 15(3), 224-235, 2011.
  • Sahoo, R., Singh, B.N., A new inverse hyperbolic zigzag theory for the static analysis of laminated composite and sandwich plates. Composite structures, 105, 385-397, 2013.
  • Houmat, A., Nonlinear free vibration of laminated composite rectangular plates with curvilinear fibers. Composite Structures, 106, 211-224, 2013.
  • Khorshid, K., Farhadi, S., Free vibration analysis of a laminated composite rectangular plate in contact with a bounded fluid. Composite structures, 104, 176-186, 2013.
  • DeValve, C. and Pitchumani, R. (2014), Analysis of vibration damping in a rotating composite beam with embedded carbon nanotubes, Composite Structures, 289-296, 2014.
  • Tornabene, F., Fantuzzi, N., Viola, E. and Reddy, J.N., Winkler–Pasternak foundation effect on the static and dynamic analyses of laminated doubly-curved and degenerate shells and panels, Composites Part B: Engineering, 57, 269-296, 2014.
  • Akbaş, Ş.D., Static analysis of a functionally graded beam with edge cracks on elastic foundation. In Proceedings of the 9 th International Fracture Conference, Istanbul, Turkey (pp. 70-80), 2011.
  • Akbaş, Ş.D., Free vibration characteristics of edge cracked functionally graded beams by using finite element method. International Journal of Engineering Trends and Technology, 4(10), 4590-4597, 2013.
  • Akbaş, Ş.D., Free vibration of axially functionally graded beams in thermal environment. International Journal of Engineering & Applied Sciences, 6(3), 37-51, 2014.
  • Akbaş, Ş.D., Free vibration and bending of functionally graded beams resting on elastic foundation. Research on Engineering Structures and Materials, 1(1), 2015.
  • Akbaş, Ş.D., Free Vibration Analysis of Edge Cracked Functionally Graded Beams Resting on Winkler-Pasternak Foundation. International Journal of Engineering & Applied Sciences, 7(3), 1-15, 2015.
  • Akbaş, Ş.D., Fonksiyonel derecelendirilmiş ortotropik bir kirişin statik ve titreşim davranışlarının incelenmesi. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 20(1), 69-82, 2018.
  • Yüksel, Y. Z., Akbaş, Ş. D. (2018). Free vibration analysis of a cross-ply laminated plate in thermal environment. International Journal of Engineering and Applied Sciences, 10(3), 176-189, 2018.
  • Draiche, K., Bousahla, A.A., Tounsi, A., Alwabli, A. S., Tounsi, A. and Mahmoud, S.R. (2019), “Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory”, Computers and Concrete 24(4), 369-378.
  • Jena, P.C. Parhi, D.R. and Pohit, G. (2016), "Dynamic Study of Composite Cracked Beam by Changing the Angle of Bidirectional Fibres", Iranian Journal of Science and Technology, Transactions A: Science 40(1), 27-37.
  • Zenkour, A. M. (2016), “Torsional Dynamic Response of a Carbon Nanotube Embedded in Visco-Pasternak’s Medium”, Mathematical Modelling and Analysis, 21(6), 852-868.
  • Waddar, S., Pitchaimani, J., Doddamani, M., & Barbero, E. (2019), “Buckling and vibration behaviour of syntactic foam core sandwich beam with natural fiber composite facings under axial compressive loads”, Composites Part B: Engineering, 175, 107133.
  • Akbaş, Ş.D., Post-buckling analysis of axially functionally graded three-dimensional beams. International Journal of Applied Mechanics, 7(03), 1550047, 2015.
  • Akbaş, Ş.D., Nonlinear static analysis of functionally graded porous beams under thermal effect. Coupled Syst. Mech, 6(4), 399-415, 2017.
  • Akbaş, Ş.D., Geometrically nonlinear analysis of functionally graded porous beams. Wind and Structures, 27(1), 59-70, 2018.
  • Akbaş, Ş.D., Geometrically nonlinear analysis of a laminated composite beam. Structural Engineering and Mechanics, 66(1), 27-36, 2018.
  • Akbaş, Ş.D., Stability of a non-homogenous porous plate by using generalized differantial quadrature method. International Journal of Engineering and Applied Sciences, 9(2), 147-155, 2017.
  • Akbaş, Ş.D., Static analysis of a nano plate by using generalized differential quadrature method. International Journal of Engineering and Applied Sciences, 8(2), 30-39, 2016.
  • Akbaş, Ş.D., Wave propagation analysis of edge cracked beams resting on elastic foundation. International Journal of Engineering and Applied Sciences, 6(1), 40-52, 2014.
  • Akbaş, Ş.D., Investigation on free and forced vibration of a bi-material composite beam. Journal of Polytechnic-Politeknik Dergisi, 21(1), 65-73, 2018.
  • Akbaş, Ş.D. Wave propagation of a functionally graded beam in thermal environments. Steel and Composite Structures, 19(6), 1421-1447, 2015.
  • Akbaş, Ş.D.. (2017). Free vibration of edge cracked functionally graded microscale beams based on the modified couple stress theory. International Journal of Structural Stability and Dynamics, 17(03), 1750033, 2017.
  • Akbaş, Ş.D., Vibration and static analysis of functionally graded porous plates. Journal of Applied and Computational Mechanics, 3(3), 199-207, 2017.
  • Akbaş, Ş.D., Thermal post-buckling analysis of a laminated composite beam. Structural Engineering and Mechanics, 67(4), 337-346, 2018.
  • Akbaş, Ş.D., Geometrically nonlinear analysis of a laminated composite beam. Structural Engineering and Mechanics, 66(1), 27-36, 2018.
  • Akbaş, Ş.D., Geometrically nonlinear analysis of functionally graded porous beams. Wind and Structures, 27(1), 59-70, 2018.
  • Akbaş, Ş.D., Hygrothermal post-buckling analysis of laminated composite beams. International Journal of Applied Mechanics, 11(01), 1950009, 2019.
  • Akbaş, Ş.D., Large deflection analysis of a fiber reinforced composite beam. Steel and Composite Structures, 27(5), 567-576, 2018.
  • Alsaid-Alwan H.H.S and Avcar, M., Analytical solution of free vibration of FG beam utilizing different types of beam theories: A comparative study, Computers and Concrete, 26(3), 285-292, 2020.
  • Arefi, M., & Civalek, Ö.,Static analysis of functionally graded composite shells on elastic foundations with nonlocal elasticity theory. Archives of Civil and Mechanical Engineering, 20(1), 1-17, 2020.
  • Avcar, M., Free vibration of non-homogeneous beam subjected to axial force resting on Pasternak foundation, J. Polytechnic, 19(4), 507-512, 2016.
  • Avcar, M., Effects of material non-homogeneity and two parameter elastic foundation on fundamental frequency parameters of Timoshenko beams, Acta Physica Polonica A, 130(1), 375-378, 2016.
  • Avcar, M. and Mohammed, W.K.M., Free vibration of functionally graded beams resting on Winkler-Pasternak foundation. Arabian Journal of Geosciences, 11(10), 232, 2018.
  • Bisheh, H. and Civalek, Ö., Vibration of smart laminated carbon nanotube-reinforced composite cylindrical panels on elastic foundations in hygrothermal environments. Thin-Walled Structures, 155, 106945, 2020.
  • Bousahla, A.A., Bourada, F., Mahmoud, S.R., Tounsi, A., Algarni, A., Adda Bedia, E.A., Tounsi, A., Buckling and dynamic behavior of the simply supported CNT-RC beams using an integral-first shear deformation theory, Computers and Concrete, 25(2), 155-166, 2020.
  • Bourada, F., Bousahla, A.A., Tounsi, A., Adda Bedia, E.A., Mahmoud, S.R., Benrahou, K.H., Tounsi, A., “Stability and dynamic analyses of SW-CNT reinforced concrete beam resting on elastic-foundation”, Computers and Concrete, 25(6), 485-495, 2020.
  • Civalek, Ö., Avcar, M., Free vibration and buckling analyses of CNT reinforced laminated non-rectangular plates by discrete singular convolution method. Engineering with Computers. https://doi.org/10.1007/s00366-020-01168-8, 2020.
  • Civalek Ö, Acar MH. Discrete singular convolution method for the analysis of Mindlin plates on elastic foundations. Int J Press Vessel Pip , 84 (9):527–535, 2007.
  • Akgöz, B., Civalek, Ö., A size-dependent beam model for stability of axially loaded carbon nanotubes surrounded by Pasternak elastic foundation, Composite Structures, 176, 1028-1038, 2017.
  • Civalek, Ö., Geometrically non-linear static and dynamic analysis of plates and shells resting on elastic foundation by the method of polynomial differential quadrature (PDQ), Fırat University (in Turkish), Elazığ, Fırat University, 2004.
  • Civalek, Ö., Kiracioglu, O., Free vibration analysis of Timoshenko beams by DSC method, International Journal for Numerical Methods in Biomedical Engineering, 26(12), 1890-1898, 2010.
  • Civalek, Ö., Yavas, A., Large deflection static analysis of rectangular plates on two parameter elastic foundations, International Journal of Science and Technology, 1(1), 43-50 , 2006.
  • Mercan, K., Demir, Ç., Civalek, Ö., Vibration analysis of FG cylindrical shells with power-law index using discrete singular convolution technique, Curved and Layered Structures, 3(1), 82-90, 2016.
  • Civalek, Ö., Geometrically nonlinear dynamic and static analysis of shallow spherical shell resting on two-parameters elastic foundations, International Journal of Pressure Vessels and Piping, 113, 1-9,  2014.
  • Civalek, Ö., Finite Element analysis of plates and shells. Elazığ, Fırat University (in Turkish), 1998.
  • Vinson, J.R. and Sierakowski, R.L., Behaviour of structures composed of composite materials, Kluwer Academic Publishers, ISBN 978-140-2009-04-4, Netherlands, 2002.

Static Analysis of a Fiber Reinforced Composite Beam Resting on Winkler-Pasternak Foundation

Year 2020, Volume: 12 Issue: 3, 88 - 98, 13.12.2020
https://doi.org/10.24107/ijeas.790858

Abstract

This paper presents static analysis of a simply supported beam made of fiber reinforced composite material resting on elastic foundation. The foundation type is considered as Winkler-Pasternak foundation type. The first-shear beam theory is used in the kinematics of the beam and the Ritz method is used and in the solution of the problem. In the Ritz method, algebraic polynomials are used with the trivial functions. In the numerical examples, the effects of fibre orientation angles, the volume fraction and foundation parameters on the static deflections of fiber reinforced composite beam are investigated. The numerical results show that fiber orientation angle, volume fraction and foundation parameter have great influence on static behavior of fiber reinforced composites.

References

  • Krawczuk, M., Ostachowicz W., Zak, A., Modal analysis of cracked, unidirectional composite beam, Composites Part B: Engineering, 28(5-6), 641-650, 1997.
  • Shen, H.S., Thermal postbuckling behavior of imperfect shear deformable laminated plates with temperature-dependent properties. Computer Methods in Applied Mechanics and Engineering, 190(40-41), 5377-5390, 2001.
  • Sayman, O., Elastic-plastic and residual stresses in symmetric aluminum metal-matrix laminated plates under a linear thermal loading. Journal of Thermal Stresses, 26(4), 391-406, 2003.
  • Shukla, K.K., Huang, J.H., Nath, Y., Thermal postbuckling of laminated composite plates with temperature dependent properties. Journal of Engineering Mechanics, 130(7), 818-825, 2004.
  • Emery, T.R., Dulieu-Barton, J.M., Earl, J.S., Cunningham, P.R. A generalised approach to the calibration of orthotropic materials for thermoelastic stress analysis. Composites Science and Technology, 68(3-4), 743-752, 2008.
  • Shen, H.S., Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments.  Composite Structures, 91(1), 9-19, 2009.
  • Akgoz, B., Civalek, O., Nonlinear vibration analysis of laminated plates resting on nonlinear two-parameters elastic foundations. Steel and Composite Structures, 11(5), 403-421, 2011.
  • Akgöz, B., Civalek, Ö.,Thermo-mechanical buckling behavior of functionally graded microbeams embedded in elastic medium. International Journal of Engineering Science, 85, 90-104, 2014.
  • Akgöz, B., Civalek, Ö., Modeling and analysis of micro-sized plates resting on elastic medium using the modified couple stress theory. Meccanica, 48(4), 863-873, 2013.
  • Akgöz, B., Civalek, Ö., Bending analysis of embedded carbon nanotubes resting on an elastic foundation using strain gradient theory. Acta Astronautica, 119, 1-12, 2016.
  • Kishore, M.H., Singh, B.N., Pandit, M.K., Nonlinear static analysis of smart laminated composite plate. Aerospace Science and Technology, 15(3), 224-235, 2011.
  • Sahoo, R., Singh, B.N., A new inverse hyperbolic zigzag theory for the static analysis of laminated composite and sandwich plates. Composite structures, 105, 385-397, 2013.
  • Houmat, A., Nonlinear free vibration of laminated composite rectangular plates with curvilinear fibers. Composite Structures, 106, 211-224, 2013.
  • Khorshid, K., Farhadi, S., Free vibration analysis of a laminated composite rectangular plate in contact with a bounded fluid. Composite structures, 104, 176-186, 2013.
  • DeValve, C. and Pitchumani, R. (2014), Analysis of vibration damping in a rotating composite beam with embedded carbon nanotubes, Composite Structures, 289-296, 2014.
  • Tornabene, F., Fantuzzi, N., Viola, E. and Reddy, J.N., Winkler–Pasternak foundation effect on the static and dynamic analyses of laminated doubly-curved and degenerate shells and panels, Composites Part B: Engineering, 57, 269-296, 2014.
  • Akbaş, Ş.D., Static analysis of a functionally graded beam with edge cracks on elastic foundation. In Proceedings of the 9 th International Fracture Conference, Istanbul, Turkey (pp. 70-80), 2011.
  • Akbaş, Ş.D., Free vibration characteristics of edge cracked functionally graded beams by using finite element method. International Journal of Engineering Trends and Technology, 4(10), 4590-4597, 2013.
  • Akbaş, Ş.D., Free vibration of axially functionally graded beams in thermal environment. International Journal of Engineering & Applied Sciences, 6(3), 37-51, 2014.
  • Akbaş, Ş.D., Free vibration and bending of functionally graded beams resting on elastic foundation. Research on Engineering Structures and Materials, 1(1), 2015.
  • Akbaş, Ş.D., Free Vibration Analysis of Edge Cracked Functionally Graded Beams Resting on Winkler-Pasternak Foundation. International Journal of Engineering & Applied Sciences, 7(3), 1-15, 2015.
  • Akbaş, Ş.D., Fonksiyonel derecelendirilmiş ortotropik bir kirişin statik ve titreşim davranışlarının incelenmesi. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 20(1), 69-82, 2018.
  • Yüksel, Y. Z., Akbaş, Ş. D. (2018). Free vibration analysis of a cross-ply laminated plate in thermal environment. International Journal of Engineering and Applied Sciences, 10(3), 176-189, 2018.
  • Draiche, K., Bousahla, A.A., Tounsi, A., Alwabli, A. S., Tounsi, A. and Mahmoud, S.R. (2019), “Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory”, Computers and Concrete 24(4), 369-378.
  • Jena, P.C. Parhi, D.R. and Pohit, G. (2016), "Dynamic Study of Composite Cracked Beam by Changing the Angle of Bidirectional Fibres", Iranian Journal of Science and Technology, Transactions A: Science 40(1), 27-37.
  • Zenkour, A. M. (2016), “Torsional Dynamic Response of a Carbon Nanotube Embedded in Visco-Pasternak’s Medium”, Mathematical Modelling and Analysis, 21(6), 852-868.
  • Waddar, S., Pitchaimani, J., Doddamani, M., & Barbero, E. (2019), “Buckling and vibration behaviour of syntactic foam core sandwich beam with natural fiber composite facings under axial compressive loads”, Composites Part B: Engineering, 175, 107133.
  • Akbaş, Ş.D., Post-buckling analysis of axially functionally graded three-dimensional beams. International Journal of Applied Mechanics, 7(03), 1550047, 2015.
  • Akbaş, Ş.D., Nonlinear static analysis of functionally graded porous beams under thermal effect. Coupled Syst. Mech, 6(4), 399-415, 2017.
  • Akbaş, Ş.D., Geometrically nonlinear analysis of functionally graded porous beams. Wind and Structures, 27(1), 59-70, 2018.
  • Akbaş, Ş.D., Geometrically nonlinear analysis of a laminated composite beam. Structural Engineering and Mechanics, 66(1), 27-36, 2018.
  • Akbaş, Ş.D., Stability of a non-homogenous porous plate by using generalized differantial quadrature method. International Journal of Engineering and Applied Sciences, 9(2), 147-155, 2017.
  • Akbaş, Ş.D., Static analysis of a nano plate by using generalized differential quadrature method. International Journal of Engineering and Applied Sciences, 8(2), 30-39, 2016.
  • Akbaş, Ş.D., Wave propagation analysis of edge cracked beams resting on elastic foundation. International Journal of Engineering and Applied Sciences, 6(1), 40-52, 2014.
  • Akbaş, Ş.D., Investigation on free and forced vibration of a bi-material composite beam. Journal of Polytechnic-Politeknik Dergisi, 21(1), 65-73, 2018.
  • Akbaş, Ş.D. Wave propagation of a functionally graded beam in thermal environments. Steel and Composite Structures, 19(6), 1421-1447, 2015.
  • Akbaş, Ş.D.. (2017). Free vibration of edge cracked functionally graded microscale beams based on the modified couple stress theory. International Journal of Structural Stability and Dynamics, 17(03), 1750033, 2017.
  • Akbaş, Ş.D., Vibration and static analysis of functionally graded porous plates. Journal of Applied and Computational Mechanics, 3(3), 199-207, 2017.
  • Akbaş, Ş.D., Thermal post-buckling analysis of a laminated composite beam. Structural Engineering and Mechanics, 67(4), 337-346, 2018.
  • Akbaş, Ş.D., Geometrically nonlinear analysis of a laminated composite beam. Structural Engineering and Mechanics, 66(1), 27-36, 2018.
  • Akbaş, Ş.D., Geometrically nonlinear analysis of functionally graded porous beams. Wind and Structures, 27(1), 59-70, 2018.
  • Akbaş, Ş.D., Hygrothermal post-buckling analysis of laminated composite beams. International Journal of Applied Mechanics, 11(01), 1950009, 2019.
  • Akbaş, Ş.D., Large deflection analysis of a fiber reinforced composite beam. Steel and Composite Structures, 27(5), 567-576, 2018.
  • Alsaid-Alwan H.H.S and Avcar, M., Analytical solution of free vibration of FG beam utilizing different types of beam theories: A comparative study, Computers and Concrete, 26(3), 285-292, 2020.
  • Arefi, M., & Civalek, Ö.,Static analysis of functionally graded composite shells on elastic foundations with nonlocal elasticity theory. Archives of Civil and Mechanical Engineering, 20(1), 1-17, 2020.
  • Avcar, M., Free vibration of non-homogeneous beam subjected to axial force resting on Pasternak foundation, J. Polytechnic, 19(4), 507-512, 2016.
  • Avcar, M., Effects of material non-homogeneity and two parameter elastic foundation on fundamental frequency parameters of Timoshenko beams, Acta Physica Polonica A, 130(1), 375-378, 2016.
  • Avcar, M. and Mohammed, W.K.M., Free vibration of functionally graded beams resting on Winkler-Pasternak foundation. Arabian Journal of Geosciences, 11(10), 232, 2018.
  • Bisheh, H. and Civalek, Ö., Vibration of smart laminated carbon nanotube-reinforced composite cylindrical panels on elastic foundations in hygrothermal environments. Thin-Walled Structures, 155, 106945, 2020.
  • Bousahla, A.A., Bourada, F., Mahmoud, S.R., Tounsi, A., Algarni, A., Adda Bedia, E.A., Tounsi, A., Buckling and dynamic behavior of the simply supported CNT-RC beams using an integral-first shear deformation theory, Computers and Concrete, 25(2), 155-166, 2020.
  • Bourada, F., Bousahla, A.A., Tounsi, A., Adda Bedia, E.A., Mahmoud, S.R., Benrahou, K.H., Tounsi, A., “Stability and dynamic analyses of SW-CNT reinforced concrete beam resting on elastic-foundation”, Computers and Concrete, 25(6), 485-495, 2020.
  • Civalek, Ö., Avcar, M., Free vibration and buckling analyses of CNT reinforced laminated non-rectangular plates by discrete singular convolution method. Engineering with Computers. https://doi.org/10.1007/s00366-020-01168-8, 2020.
  • Civalek Ö, Acar MH. Discrete singular convolution method for the analysis of Mindlin plates on elastic foundations. Int J Press Vessel Pip , 84 (9):527–535, 2007.
  • Akgöz, B., Civalek, Ö., A size-dependent beam model for stability of axially loaded carbon nanotubes surrounded by Pasternak elastic foundation, Composite Structures, 176, 1028-1038, 2017.
  • Civalek, Ö., Geometrically non-linear static and dynamic analysis of plates and shells resting on elastic foundation by the method of polynomial differential quadrature (PDQ), Fırat University (in Turkish), Elazığ, Fırat University, 2004.
  • Civalek, Ö., Kiracioglu, O., Free vibration analysis of Timoshenko beams by DSC method, International Journal for Numerical Methods in Biomedical Engineering, 26(12), 1890-1898, 2010.
  • Civalek, Ö., Yavas, A., Large deflection static analysis of rectangular plates on two parameter elastic foundations, International Journal of Science and Technology, 1(1), 43-50 , 2006.
  • Mercan, K., Demir, Ç., Civalek, Ö., Vibration analysis of FG cylindrical shells with power-law index using discrete singular convolution technique, Curved and Layered Structures, 3(1), 82-90, 2016.
  • Civalek, Ö., Geometrically nonlinear dynamic and static analysis of shallow spherical shell resting on two-parameters elastic foundations, International Journal of Pressure Vessels and Piping, 113, 1-9,  2014.
  • Civalek, Ö., Finite Element analysis of plates and shells. Elazığ, Fırat University (in Turkish), 1998.
  • Vinson, J.R. and Sierakowski, R.L., Behaviour of structures composed of composite materials, Kluwer Academic Publishers, ISBN 978-140-2009-04-4, Netherlands, 2002.
There are 61 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Şeref Doğuşcan Akbaş

Publication Date December 13, 2020
Acceptance Date November 18, 2020
Published in Issue Year 2020 Volume: 12 Issue: 3

Cite

APA Akbaş, Ş. D. (2020). Static Analysis of a Fiber Reinforced Composite Beam Resting on Winkler-Pasternak Foundation. International Journal of Engineering and Applied Sciences, 12(3), 88-98. https://doi.org/10.24107/ijeas.790858
AMA Akbaş ŞD. Static Analysis of a Fiber Reinforced Composite Beam Resting on Winkler-Pasternak Foundation. IJEAS. December 2020;12(3):88-98. doi:10.24107/ijeas.790858
Chicago Akbaş, Şeref Doğuşcan. “Static Analysis of a Fiber Reinforced Composite Beam Resting on Winkler-Pasternak Foundation”. International Journal of Engineering and Applied Sciences 12, no. 3 (December 2020): 88-98. https://doi.org/10.24107/ijeas.790858.
EndNote Akbaş ŞD (December 1, 2020) Static Analysis of a Fiber Reinforced Composite Beam Resting on Winkler-Pasternak Foundation. International Journal of Engineering and Applied Sciences 12 3 88–98.
IEEE Ş. D. Akbaş, “Static Analysis of a Fiber Reinforced Composite Beam Resting on Winkler-Pasternak Foundation”, IJEAS, vol. 12, no. 3, pp. 88–98, 2020, doi: 10.24107/ijeas.790858.
ISNAD Akbaş, Şeref Doğuşcan. “Static Analysis of a Fiber Reinforced Composite Beam Resting on Winkler-Pasternak Foundation”. International Journal of Engineering and Applied Sciences 12/3 (December 2020), 88-98. https://doi.org/10.24107/ijeas.790858.
JAMA Akbaş ŞD. Static Analysis of a Fiber Reinforced Composite Beam Resting on Winkler-Pasternak Foundation. IJEAS. 2020;12:88–98.
MLA Akbaş, Şeref Doğuşcan. “Static Analysis of a Fiber Reinforced Composite Beam Resting on Winkler-Pasternak Foundation”. International Journal of Engineering and Applied Sciences, vol. 12, no. 3, 2020, pp. 88-98, doi:10.24107/ijeas.790858.
Vancouver Akbaş ŞD. Static Analysis of a Fiber Reinforced Composite Beam Resting on Winkler-Pasternak Foundation. IJEAS. 2020;12(3):88-9.

21357