PDF Zotero Mendeley EndNote BibTex Cite

OPTIMIZATION OF SPACING BETWEEN STAGGERED METAL HYDRIDE TANKS INTEGRATED FUEL CELL SYSTEM

Year 2016, Volume 1, Issue 3, 49 - 58, 01.08.2016

Abstract

The sufficient hydrogen flow for requirements depends not only on the quantity contained in the metal hydride tanks, but also on other dynamic factors such as the ambient conditions, metal hydride kinetics and heat transfer mechanisms. In this study, the effects of dynamic factors on optimum spacing between metal hydride (MH) Hydrogen storage tanks are researched theoretically. A new approaching is presented for defining the optimum spacing between tanks according to different operating conditions. As MH alloys, AB5 type alloy (LaNi5) is selected. The analysis takes into account the effect of dynamic factors. The spacing is calculated by maximizing the heat transfer by means of accurate correlations. The results show that there exists an optimum spacing between the MH tanks for which the heat transfer is maximum and it should be considered to size the MH-Fuel cell system without extra cost

References

  • Aldas K, Mat MD, Kaplan Y (2002) A three-dimensional mathematical model for absorption in a metal hydride bed. International Journal of Hydrogen Energy 27 (10):1049-1056. doi:http://dx.doi.org/10.1016/S0360-3199(02)00010-1.
  • Bao Z, Yang F, Wu Z, Nyallang Nyamsi S, Zhang Z (2013) Optimal design of metal hydride reactors based on CFD–Taguchi combined method. Energy Conversion and Management 65:322-330. doi:http://dx.doi.org/10.1016/j.enconman.2012.07.027.
  • Bejan A (1984) Convection Heat transfer. Wiley, New York. Cho J-H, Yu S-S, Kim M-Y, Kang S-G, Lee Y-D, Ahn K-Y, Ji H-J (2013) Dynamic modeling and simulation of hydrogen supply capacity from a metal hydride tank. International Journal of Hydrogen Energy 38 (21):8813-8828. doi:http://dx.doi.org/10.1016/j.ijhydene.2013.02.142
  • Dhaou H, Ben Khedher N, Mellouli S, Souahlia A, Askri F, Jemni A, Ben Nasrallah S (2011) Improvement of thermal performance of spiral heat exchanger on hydrogen storage by adding copper fins. International Journal of Thermal Sciences 50 (12):2536- 2542. doi:http://dx.doi.org/10.1016/j.ijthermalsci.2011.05.016
  • Førde T, Eriksen J, Pettersen AG, Vie PJS, Ulleberg Ø (2009) Thermal integration of a metal hydride storage unit and a PEM fuel cell stack. International Journal of Hydrogen Energy 34 (16):6730-6739. doi:http://dx.doi.org/10.1016/j.ijhydene.2009.05.146
  • Hilali I (2015) Optimum Spacing Between Horizontal Metal Hydride (MH) Hydrogen Storage Tanks Integrated with Fuel Cell Power System in Natural Convection. Journal of Thermal Scienceand Technology 35 (2):129-136
  • Incropera FP (2007) Fundamentals of Heat and Mass Transfer. John Wiley & Sons, New York
  • Jemni A, Nasrallah SB (1995) Study of two-dimensional heat and mass transfer during absorption in a metal-hydrogen reactor. International Journal of Hydrogen Energy 20 (1):43-52. doi:http://dx.doi.org/10.1016/0360-3199(93)E0007-8.
  • Jiang Z, Dougal RA, Liu S, Gadre SA, Ebner AD, Ritter JA (2005) Simulation of a thermally coupled metal-hydride hydrogen storage and fuel cell system. Journal of Power Sources 142 (1-2):92-102. doi:10.1016/j.jpowsour.2004.09.029.
  • Ma J, Wang Y, Shi S, Yang F, Bao Z, Zhang Z (2014) Optimization of heat transfer device and analysis of heat & mass transfer on the finned multi-tubular metal hydride tank. International Journal of Hydrogen Energy 39 (25):13583-13595. doi:http://dx.doi.org/10.1016/j.ijhydene.2014.03.016.
  • MacDonald BD, Rowe AM (2006) Impacts of external heat transfer enhancements on metal hydride storage tanks. International Journal of Hydrogen Energy 31 (12):1721- 1731. doi:http://dx.doi.org/10.1016/j.ijhydene.2006.01.007.
  • Minko KB, Artemov VI, Yan’kov GG (2014) Numerical simulation of sorption/desorption processes in metal-hydride systems for hydrogen storage and purification. Part I: Development of a mathematical model. International Journal of Heat and Mass Transfer 68:683-692. doi:http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.09.056.
  • Nakano A, Ito H, Bhogilla SS, Motyka T, Corgnale C, Greenway S, Hauback BC (2015) Research and development for a metal hydride tank with double coil type heat exchanger below 1.0 MPa (G) operation. International Journal of Hydrogen Energy 40 (6):2663-2672. doi:http://dx.doi.org/10.1016/j.ijhydene.2014.12.051.
  • Raju M, Kumar S (2012) Optimization of heat exchanger designs in metal hydride based hydrogen storage systems. International Journal of Hydrogen Energy 37 (3):2767-2778. doi:http://dx.doi.org/10.1016/j.ijhydene.2011.06.120.
  • Rizzi P, Pinatel E, Luetto C, Florian P, Graizzaro A, Gagliano S, Baricco M (2015) Integration of a PEM fuel cell with a metal hydride tank for stationary applications. Journal of Alloys and Compounds 645, Supplement 1:S338-S342. doi:http://dx.doi.org/10.1016/j.jallcom.2014.12.145.
  • Sadeghipour MS, Razi YP (2001) Natural convection from a confined horizontal cylinder: the optimum distance between the confining walls. International Journal of Heat and Mass Transfer 44 (2):367-374. doi:http://dx.doi.org/10.1016/S0017-9310(00)00110-1.
  • Sandrock G (1999) A panoramic overview of hydrogen storage alloys from a gas reaction point of view. Journal of Alloys and Compounds 293–295:877-888. doi:http://dx.doi.org/10.1016/S0925-8388(99)00384-9.
  • Satya Sekhar B, Lototskyy M, Kolesnikov A, Moropeng ML, Tarasov BP, Pollet BG (2015) Performance analysis of cylindrical metal hydride beds with various heat exchange options. Journal of Alloys and Compounds 645, Supplement 1:S89-S95. doi:http://dx.doi.org/10.1016/j.jallcom.2014.12.272.
  • Stanescu G, Fowler AJ, Bejan A (1996) The optimal spacing of cylinders in freestream cross-flow forced convection. International Journal of Heat and Mass Transfer 39 (2):311-317. doi:http://dx.doi.org/10.1016/0017-9310(95)00122-P.
  • Tetuko AP, Shabani B, Andrews J (2016) Thermal coupling of PEM fuel cell and metal hydride hydrogen storage using heat pipes. International Journal of Hydrogen Energy 41 (7):4264-4277. doi:http://dx.doi.org/10.1016/j.ijhydene.2015.12.194.

Year 2016, Volume 1, Issue 3, 49 - 58, 01.08.2016

Abstract

References

  • Aldas K, Mat MD, Kaplan Y (2002) A three-dimensional mathematical model for absorption in a metal hydride bed. International Journal of Hydrogen Energy 27 (10):1049-1056. doi:http://dx.doi.org/10.1016/S0360-3199(02)00010-1.
  • Bao Z, Yang F, Wu Z, Nyallang Nyamsi S, Zhang Z (2013) Optimal design of metal hydride reactors based on CFD–Taguchi combined method. Energy Conversion and Management 65:322-330. doi:http://dx.doi.org/10.1016/j.enconman.2012.07.027.
  • Bejan A (1984) Convection Heat transfer. Wiley, New York. Cho J-H, Yu S-S, Kim M-Y, Kang S-G, Lee Y-D, Ahn K-Y, Ji H-J (2013) Dynamic modeling and simulation of hydrogen supply capacity from a metal hydride tank. International Journal of Hydrogen Energy 38 (21):8813-8828. doi:http://dx.doi.org/10.1016/j.ijhydene.2013.02.142
  • Dhaou H, Ben Khedher N, Mellouli S, Souahlia A, Askri F, Jemni A, Ben Nasrallah S (2011) Improvement of thermal performance of spiral heat exchanger on hydrogen storage by adding copper fins. International Journal of Thermal Sciences 50 (12):2536- 2542. doi:http://dx.doi.org/10.1016/j.ijthermalsci.2011.05.016
  • Førde T, Eriksen J, Pettersen AG, Vie PJS, Ulleberg Ø (2009) Thermal integration of a metal hydride storage unit and a PEM fuel cell stack. International Journal of Hydrogen Energy 34 (16):6730-6739. doi:http://dx.doi.org/10.1016/j.ijhydene.2009.05.146
  • Hilali I (2015) Optimum Spacing Between Horizontal Metal Hydride (MH) Hydrogen Storage Tanks Integrated with Fuel Cell Power System in Natural Convection. Journal of Thermal Scienceand Technology 35 (2):129-136
  • Incropera FP (2007) Fundamentals of Heat and Mass Transfer. John Wiley & Sons, New York
  • Jemni A, Nasrallah SB (1995) Study of two-dimensional heat and mass transfer during absorption in a metal-hydrogen reactor. International Journal of Hydrogen Energy 20 (1):43-52. doi:http://dx.doi.org/10.1016/0360-3199(93)E0007-8.
  • Jiang Z, Dougal RA, Liu S, Gadre SA, Ebner AD, Ritter JA (2005) Simulation of a thermally coupled metal-hydride hydrogen storage and fuel cell system. Journal of Power Sources 142 (1-2):92-102. doi:10.1016/j.jpowsour.2004.09.029.
  • Ma J, Wang Y, Shi S, Yang F, Bao Z, Zhang Z (2014) Optimization of heat transfer device and analysis of heat & mass transfer on the finned multi-tubular metal hydride tank. International Journal of Hydrogen Energy 39 (25):13583-13595. doi:http://dx.doi.org/10.1016/j.ijhydene.2014.03.016.
  • MacDonald BD, Rowe AM (2006) Impacts of external heat transfer enhancements on metal hydride storage tanks. International Journal of Hydrogen Energy 31 (12):1721- 1731. doi:http://dx.doi.org/10.1016/j.ijhydene.2006.01.007.
  • Minko KB, Artemov VI, Yan’kov GG (2014) Numerical simulation of sorption/desorption processes in metal-hydride systems for hydrogen storage and purification. Part I: Development of a mathematical model. International Journal of Heat and Mass Transfer 68:683-692. doi:http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.09.056.
  • Nakano A, Ito H, Bhogilla SS, Motyka T, Corgnale C, Greenway S, Hauback BC (2015) Research and development for a metal hydride tank with double coil type heat exchanger below 1.0 MPa (G) operation. International Journal of Hydrogen Energy 40 (6):2663-2672. doi:http://dx.doi.org/10.1016/j.ijhydene.2014.12.051.
  • Raju M, Kumar S (2012) Optimization of heat exchanger designs in metal hydride based hydrogen storage systems. International Journal of Hydrogen Energy 37 (3):2767-2778. doi:http://dx.doi.org/10.1016/j.ijhydene.2011.06.120.
  • Rizzi P, Pinatel E, Luetto C, Florian P, Graizzaro A, Gagliano S, Baricco M (2015) Integration of a PEM fuel cell with a metal hydride tank for stationary applications. Journal of Alloys and Compounds 645, Supplement 1:S338-S342. doi:http://dx.doi.org/10.1016/j.jallcom.2014.12.145.
  • Sadeghipour MS, Razi YP (2001) Natural convection from a confined horizontal cylinder: the optimum distance between the confining walls. International Journal of Heat and Mass Transfer 44 (2):367-374. doi:http://dx.doi.org/10.1016/S0017-9310(00)00110-1.
  • Sandrock G (1999) A panoramic overview of hydrogen storage alloys from a gas reaction point of view. Journal of Alloys and Compounds 293–295:877-888. doi:http://dx.doi.org/10.1016/S0925-8388(99)00384-9.
  • Satya Sekhar B, Lototskyy M, Kolesnikov A, Moropeng ML, Tarasov BP, Pollet BG (2015) Performance analysis of cylindrical metal hydride beds with various heat exchange options. Journal of Alloys and Compounds 645, Supplement 1:S89-S95. doi:http://dx.doi.org/10.1016/j.jallcom.2014.12.272.
  • Stanescu G, Fowler AJ, Bejan A (1996) The optimal spacing of cylinders in freestream cross-flow forced convection. International Journal of Heat and Mass Transfer 39 (2):311-317. doi:http://dx.doi.org/10.1016/0017-9310(95)00122-P.
  • Tetuko AP, Shabani B, Andrews J (2016) Thermal coupling of PEM fuel cell and metal hydride hydrogen storage using heat pipes. International Journal of Hydrogen Energy 41 (7):4264-4277. doi:http://dx.doi.org/10.1016/j.ijhydene.2015.12.194.

Details

Primary Language English
Journal Section Research Article
Authors

İsmail HİLALİ This is me
Harran University


Refet KARADAĞ This is me
Harran University


Hüsamettin BULUT This is me
Harran University

Publication Date August 1, 2016
Published in Issue Year 2016, Volume 1, Issue 3

Cite

Bibtex @ { ijees612261, journal = {The International Journal of Energy and Engineering Sciences}, issn = {2602-294X}, address = {Gaziantep üniversitesi Mühendislik Fakültesi Dekanlığı}, publisher = {Gaziantep University}, year = {2016}, volume = {1}, pages = {49 - 58}, doi = {}, title = {OPTIMIZATION OF SPACING BETWEEN STAGGERED METAL HYDRIDE TANKS INTEGRATED FUEL CELL SYSTEM}, key = {cite}, author = {Hilali, İsmail and Karadağ, Refet and Bulut, Hüsamettin} }
APA Hilali, İ. , Karadağ, R. & Bulut, H. (2016). OPTIMIZATION OF SPACING BETWEEN STAGGERED METAL HYDRIDE TANKS INTEGRATED FUEL CELL SYSTEM . The International Journal of Energy and Engineering Sciences , 1 (3) , 49-58 . Retrieved from https://dergipark.org.tr/en/pub/ijees/issue/48357/612261
MLA Hilali, İ. , Karadağ, R. , Bulut, H. "OPTIMIZATION OF SPACING BETWEEN STAGGERED METAL HYDRIDE TANKS INTEGRATED FUEL CELL SYSTEM" . The International Journal of Energy and Engineering Sciences 1 (2016 ): 49-58 <https://dergipark.org.tr/en/pub/ijees/issue/48357/612261>
Chicago Hilali, İ. , Karadağ, R. , Bulut, H. "OPTIMIZATION OF SPACING BETWEEN STAGGERED METAL HYDRIDE TANKS INTEGRATED FUEL CELL SYSTEM". The International Journal of Energy and Engineering Sciences 1 (2016 ): 49-58
RIS TY - JOUR T1 - OPTIMIZATION OF SPACING BETWEEN STAGGERED METAL HYDRIDE TANKS INTEGRATED FUEL CELL SYSTEM AU - İsmail Hilali , Refet Karadağ , Hüsamettin Bulut Y1 - 2016 PY - 2016 N1 - DO - T2 - The International Journal of Energy and Engineering Sciences JF - Journal JO - JOR SP - 49 EP - 58 VL - 1 IS - 3 SN - 2602-294X- M3 - UR - Y2 - 2021 ER -
EndNote %0 The International Journal of Energy and Engineering Sciences OPTIMIZATION OF SPACING BETWEEN STAGGERED METAL HYDRIDE TANKS INTEGRATED FUEL CELL SYSTEM %A İsmail Hilali , Refet Karadağ , Hüsamettin Bulut %T OPTIMIZATION OF SPACING BETWEEN STAGGERED METAL HYDRIDE TANKS INTEGRATED FUEL CELL SYSTEM %D 2016 %J The International Journal of Energy and Engineering Sciences %P 2602-294X- %V 1 %N 3 %R %U
ISNAD Hilali, İsmail , Karadağ, Refet , Bulut, Hüsamettin . "OPTIMIZATION OF SPACING BETWEEN STAGGERED METAL HYDRIDE TANKS INTEGRATED FUEL CELL SYSTEM". The International Journal of Energy and Engineering Sciences 1 / 3 (August 2016): 49-58 .
AMA Hilali İ. , Karadağ R. , Bulut H. OPTIMIZATION OF SPACING BETWEEN STAGGERED METAL HYDRIDE TANKS INTEGRATED FUEL CELL SYSTEM. IJEES. 2016; 1(3): 49-58.
Vancouver Hilali İ. , Karadağ R. , Bulut H. OPTIMIZATION OF SPACING BETWEEN STAGGERED METAL HYDRIDE TANKS INTEGRATED FUEL CELL SYSTEM. The International Journal of Energy and Engineering Sciences. 2016; 1(3): 49-58.
IEEE İ. Hilali , R. Karadağ and H. Bulut , "OPTIMIZATION OF SPACING BETWEEN STAGGERED METAL HYDRIDE TANKS INTEGRATED FUEL CELL SYSTEM", The International Journal of Energy and Engineering Sciences, vol. 1, no. 3, pp. 49-58, Aug. 2016

IMPORTANT NOTES

No part of the material protected by this copyright may be reproduced or utilized in any form or by any means, without the prior written permission of the copyright owners, unless the use is a fair dealing for the purpose of private study, research or review. The authors reserve the right that their material can be used for purely educational and research purposes. All the authors are responsible for the originality and plagiarism, multiple publication, disclosure and conflicts of interest and fundamental errors in the published works.

*Please note that  All the authors are responsible for the originality and plagiarism, multiple publication, disclosure and conflicts of interest and fundamental errors in the published works. Author(s) submitting a manuscript for publication in IJEES also accept that the manuscript may go through screening for plagiarism check using IThenticate software. For experimental works involving animals, approvals from relevant ethics committee should have been obtained beforehand assuring that the experiment was conducted according to relevant national or international guidelines on care and use of laboratory animals.  Authors may be requested to provide evidence to this end.
 
**Authors are highly recommended to obey the IJEES policies regarding copyrights/Licensing and ethics before submitting their manuscripts.


Copyright © 2021. AA. All rights reserved