Research Article
BibTex RIS Cite
Year 2020, Volume: 5 Issue: 2, 94 - 99, 01.06.2020
https://doi.org/10.26833/ijeg.614856

Abstract

References

  • Chen, M.Q. (2011) Observations and simulations of seismoionospheric GPS total electron content anomalies before the 12 January 2010 M7 Haiti earthquake. J. Geophys. Res. 116 (A04302). 1e9.
  • ChuoY.J.Y, .I.Chen, J.Y.Liu, S.A. Pulinets (2001) Ionospheric foF2 variations prior to strong earthquakes in Taiwan. Advances in Space Research. https://doi.org/10.1016/S0273 1177(01)00209-5. Volume 27 Issues 6–7 Pages 1305-1310
  • C. Noll, The Crustal Dynamics Data Information System (2010) A resource to support scientific analysis using space geodesy, Advances in Space Research,Volume 45, Issue 12, Pages 1421-1440, ISSN 0273-1177, DOI: 10.1016/j.asr.2010.01.018.
  • Depueva, A. H. And Ruzhin, Yu. Ya (1995) Seismoionospheric fountain effect as analogue of active space experiment. Advances in Space Research. 15. pp. 151–154.
  • Dimitar, O., Pullinets, S., Alexey, R.A., Konstantin, T., Dimitri, D., Menas, K., Patrick, T. (2011) Atmosphereionosphere response to the M9 Tohoku earthquake revealed by multi instrument space-borne and ground observations: preliminary results. Earthq. Sci. 24. 1-7.
  • Dogan, U., Ergintav, S., Skone, S., Arslan, N., Oz, D. (2011) Monitoring of the ionosphere TEC variations during the 17th August 1999 Izmit earthquake using GPS data. Earth Planets Space. 63. 1183-1192.
  • Dutta, H.N., Dabas, R.S., Das, M.R., Sharma, K., Singh, B., (2007) Ionospheric perturbations over Delhi caused by the 26 December 2004 Sumatra earthquake. Int. J. Remote Sens. 28 (13-14). 3141-3151
  • E. Calais and J. B. Minster (1995) GPS Detection of Iono- spheric Perturbations Following the January 17, 1994, Northridge Earthquake. Geophysical Research Letters. Vol. 22. No. 9, pp. 1045-1048. doi:10.1029/95GL00168
  • G K. Davies and D. M. Baker (1965) Ionospheric Effects Ob- served Round the Time of Alaska Earthquake of March 28, 1964. Journal of Geophysical Research. Vol. 70. No. 9. pp. 2251-2263. doi:10.1029/JZ070i009p02251
  • J. Y. Liu, Y. I. Chen, S. A. Pulinets, Y. B. Tsai, Y. J. Chuo (2000) Seismo-ionospheric signatures prior to M>= 6.0 Taiwan earthquakes. Geophysical Research Letters. Vol. 27. No. 19. October 1. Pages 3113-3116
  • M Devi, AJD Sarma, S Kalita, AK Barbara, A Depueva, (2012) Adaptive techniques for extraction of pre-seismic parameters of Total Electron Content (TEC) at anomaly crest station. Geomatics, Natural Hazards and Risk. 3 (3). 193-206
  • M. Hayakawa (1999) Atmospheric and Ionospheric Electro- magnetic Phenomena Associated with Earthquakes. Terra Scientific Publishing Co, Tokyo
  • M. Hayakawa, O. A. Molchanov, T. Ondoh and E. Kawai (1996) The Precursory Signature Effect of the Kobe Earthquake on VLF Sub Ionospheric Signals. Journal of Communications Research Laboratory Tokyo. Vol. 43. 1996 pp. 169-180.
  • Priyadarshi, S., Kumar, S., Singh, A.K. (2011) Changes in total electron content associated with earthquakes (M>5) observed from GPS station Varanasi, India. Geomatics, Nat. Hazard Risk. 2 (2). 123e139.
  • S. Kalita (2015) Monitoring the TEC variation using pattern matching method during earthquakes as determined from ground based TEC measurement and satellite data. Int. J. Sci. Res. Publications, vol. 5. no. 6. pp. 4.
  • Tuna H., O. Arikan, F. Arikan, T.L. Gulyaeva, and U. Sezen (2014) Online User-Friendly Slant Total Electron Content Computation from IRI-Plas: IRI-Plas-STEC. Space Weather. 12(1). 64-75. doi:10.1002/2013SW000998.
  • V. N. Oraevsky, Y. Y. Ruzhin and I. I. Shagimuratove (2000) Anomalies of Ionospheric TEC above Turkey before Two Strong Earthquakes. Proceedings of 15th Wroclaw EMC Symposium. Brugge. pp. 508-512.
  • Yuri Ruzhin, Costas Nomicos (2007) Radio VHF precursors of earthquakes. Nat Hazards. 006-9021-1. 40:573–583 DOI 10.1007/s11069
  • Zhang, Zhengh & Liu, J & Sun, J & Wen, L & Tapponnier, P & Xing, X & Xu, Qun & Hu, Guyue & Zeng, Lingsen & Ding, Lin & Ji, Chen & Hudnut, Kenneth (2008) Co-seismic ruptures of the 12 May, 2008, Mw 8.0 Wenchuan earthquake, Sichuan: EW crustal shortening on oblique, parallel thrusts along the eastern edge of Tibet. AGU Fall Meeting Abstracts. 1. 0054

A novel approach for ionospheric total electron content earthquake precursor and epicenter detection for low-latitude

Year 2020, Volume: 5 Issue: 2, 94 - 99, 01.06.2020
https://doi.org/10.26833/ijeg.614856

Abstract

The earthquake precursory phenomena detection using ionospheric perturbation characteristics is a new technique used by the scientist now days. This paper focuses a new technique for detecting any modification in the time series profile shape caused by an impending earthquake to identify precursors as well as an image processing technique for epicenter detection. For this purpose IGS Global Navigation Satellite System (GNSS) Total Electron Content Data (TEC) are utilized from different stations across the world. From the experiment it is observed that the method may detect earthquake precursors a few hours or days prior to the main event due to ionospheric perturbations induced by initiation of earthquake process.

References

  • Chen, M.Q. (2011) Observations and simulations of seismoionospheric GPS total electron content anomalies before the 12 January 2010 M7 Haiti earthquake. J. Geophys. Res. 116 (A04302). 1e9.
  • ChuoY.J.Y, .I.Chen, J.Y.Liu, S.A. Pulinets (2001) Ionospheric foF2 variations prior to strong earthquakes in Taiwan. Advances in Space Research. https://doi.org/10.1016/S0273 1177(01)00209-5. Volume 27 Issues 6–7 Pages 1305-1310
  • C. Noll, The Crustal Dynamics Data Information System (2010) A resource to support scientific analysis using space geodesy, Advances in Space Research,Volume 45, Issue 12, Pages 1421-1440, ISSN 0273-1177, DOI: 10.1016/j.asr.2010.01.018.
  • Depueva, A. H. And Ruzhin, Yu. Ya (1995) Seismoionospheric fountain effect as analogue of active space experiment. Advances in Space Research. 15. pp. 151–154.
  • Dimitar, O., Pullinets, S., Alexey, R.A., Konstantin, T., Dimitri, D., Menas, K., Patrick, T. (2011) Atmosphereionosphere response to the M9 Tohoku earthquake revealed by multi instrument space-borne and ground observations: preliminary results. Earthq. Sci. 24. 1-7.
  • Dogan, U., Ergintav, S., Skone, S., Arslan, N., Oz, D. (2011) Monitoring of the ionosphere TEC variations during the 17th August 1999 Izmit earthquake using GPS data. Earth Planets Space. 63. 1183-1192.
  • Dutta, H.N., Dabas, R.S., Das, M.R., Sharma, K., Singh, B., (2007) Ionospheric perturbations over Delhi caused by the 26 December 2004 Sumatra earthquake. Int. J. Remote Sens. 28 (13-14). 3141-3151
  • E. Calais and J. B. Minster (1995) GPS Detection of Iono- spheric Perturbations Following the January 17, 1994, Northridge Earthquake. Geophysical Research Letters. Vol. 22. No. 9, pp. 1045-1048. doi:10.1029/95GL00168
  • G K. Davies and D. M. Baker (1965) Ionospheric Effects Ob- served Round the Time of Alaska Earthquake of March 28, 1964. Journal of Geophysical Research. Vol. 70. No. 9. pp. 2251-2263. doi:10.1029/JZ070i009p02251
  • J. Y. Liu, Y. I. Chen, S. A. Pulinets, Y. B. Tsai, Y. J. Chuo (2000) Seismo-ionospheric signatures prior to M>= 6.0 Taiwan earthquakes. Geophysical Research Letters. Vol. 27. No. 19. October 1. Pages 3113-3116
  • M Devi, AJD Sarma, S Kalita, AK Barbara, A Depueva, (2012) Adaptive techniques for extraction of pre-seismic parameters of Total Electron Content (TEC) at anomaly crest station. Geomatics, Natural Hazards and Risk. 3 (3). 193-206
  • M. Hayakawa (1999) Atmospheric and Ionospheric Electro- magnetic Phenomena Associated with Earthquakes. Terra Scientific Publishing Co, Tokyo
  • M. Hayakawa, O. A. Molchanov, T. Ondoh and E. Kawai (1996) The Precursory Signature Effect of the Kobe Earthquake on VLF Sub Ionospheric Signals. Journal of Communications Research Laboratory Tokyo. Vol. 43. 1996 pp. 169-180.
  • Priyadarshi, S., Kumar, S., Singh, A.K. (2011) Changes in total electron content associated with earthquakes (M>5) observed from GPS station Varanasi, India. Geomatics, Nat. Hazard Risk. 2 (2). 123e139.
  • S. Kalita (2015) Monitoring the TEC variation using pattern matching method during earthquakes as determined from ground based TEC measurement and satellite data. Int. J. Sci. Res. Publications, vol. 5. no. 6. pp. 4.
  • Tuna H., O. Arikan, F. Arikan, T.L. Gulyaeva, and U. Sezen (2014) Online User-Friendly Slant Total Electron Content Computation from IRI-Plas: IRI-Plas-STEC. Space Weather. 12(1). 64-75. doi:10.1002/2013SW000998.
  • V. N. Oraevsky, Y. Y. Ruzhin and I. I. Shagimuratove (2000) Anomalies of Ionospheric TEC above Turkey before Two Strong Earthquakes. Proceedings of 15th Wroclaw EMC Symposium. Brugge. pp. 508-512.
  • Yuri Ruzhin, Costas Nomicos (2007) Radio VHF precursors of earthquakes. Nat Hazards. 006-9021-1. 40:573–583 DOI 10.1007/s11069
  • Zhang, Zhengh & Liu, J & Sun, J & Wen, L & Tapponnier, P & Xing, X & Xu, Qun & Hu, Guyue & Zeng, Lingsen & Ding, Lin & Ji, Chen & Hudnut, Kenneth (2008) Co-seismic ruptures of the 12 May, 2008, Mw 8.0 Wenchuan earthquake, Sichuan: EW crustal shortening on oblique, parallel thrusts along the eastern edge of Tibet. AGU Fall Meeting Abstracts. 1. 0054
There are 19 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Santanu Kalita 0000-0003-2715-9225

Bornali Chetia This is me 0000-0002-9997-0300

Publication Date June 1, 2020
Published in Issue Year 2020 Volume: 5 Issue: 2

Cite

APA Kalita, S., & Chetia, B. (2020). A novel approach for ionospheric total electron content earthquake precursor and epicenter detection for low-latitude. International Journal of Engineering and Geosciences, 5(2), 94-99. https://doi.org/10.26833/ijeg.614856
AMA Kalita S, Chetia B. A novel approach for ionospheric total electron content earthquake precursor and epicenter detection for low-latitude. IJEG. June 2020;5(2):94-99. doi:10.26833/ijeg.614856
Chicago Kalita, Santanu, and Bornali Chetia. “A Novel Approach for Ionospheric Total Electron Content Earthquake Precursor and Epicenter Detection for Low-Latitude”. International Journal of Engineering and Geosciences 5, no. 2 (June 2020): 94-99. https://doi.org/10.26833/ijeg.614856.
EndNote Kalita S, Chetia B (June 1, 2020) A novel approach for ionospheric total electron content earthquake precursor and epicenter detection for low-latitude. International Journal of Engineering and Geosciences 5 2 94–99.
IEEE S. Kalita and B. Chetia, “A novel approach for ionospheric total electron content earthquake precursor and epicenter detection for low-latitude”, IJEG, vol. 5, no. 2, pp. 94–99, 2020, doi: 10.26833/ijeg.614856.
ISNAD Kalita, Santanu - Chetia, Bornali. “A Novel Approach for Ionospheric Total Electron Content Earthquake Precursor and Epicenter Detection for Low-Latitude”. International Journal of Engineering and Geosciences 5/2 (June 2020), 94-99. https://doi.org/10.26833/ijeg.614856.
JAMA Kalita S, Chetia B. A novel approach for ionospheric total electron content earthquake precursor and epicenter detection for low-latitude. IJEG. 2020;5:94–99.
MLA Kalita, Santanu and Bornali Chetia. “A Novel Approach for Ionospheric Total Electron Content Earthquake Precursor and Epicenter Detection for Low-Latitude”. International Journal of Engineering and Geosciences, vol. 5, no. 2, 2020, pp. 94-99, doi:10.26833/ijeg.614856.
Vancouver Kalita S, Chetia B. A novel approach for ionospheric total electron content earthquake precursor and epicenter detection for low-latitude. IJEG. 2020;5(2):94-9.