Research Article
BibTex RIS Cite
Year 2022, Volume: 7 Issue: 3, 283 - 293, 15.10.2022
https://doi.org/10.26833/ijeg.978990

Abstract

References

  • Aguilar-Barojas S (2005). Fórmulas para el cálculo de la muestra en investigaciones de salud. Salud en Tabasco, 11(1-2), 333-338.
  • Alexander C, Korstjens A H, Usher G, Nowak M G, Fredriksson G & Hill R A (2018a). LiDAR patch metrics for object-based clustering of forest types in a tropical rainforest. International Journal of Applied Earth Observation and Geoinformation, 73, 253-261.
  • Alexander C, Korstjens A H & Hill R A (2018b). Influence of micro-topography and crown characteristics on tree height estimations in tropical forests based on LiDAR canopy height models. International journal of applied earth observation and geoinformation, 65, 105-113.
  • Allinne C, Savary S & Avelino J (2016). Delicate balance between pest and disease injuries, yield performance, and other ecosystem services in the complex coffee-based systems of Costa Rica. Agriculture, Ecosystems & Environment, 222, 1-12.
  • Asase A, Ofori‐Frimpong K & Ekpe P K (2010). Impact of cocoa farming on vegetation in an agricultural landscape in Ghana. African Journal of Ecology, 48(2), 338-346.
  • Arcos R, Ruiz A, Altamirano M & Albuja Viteri L H (2013). Uso del estrato vertical por el mono aullador (Alouatta palliata) (Primates: Atelidae) en un bosque subtropical del Noroccidente de Ecuador.
  • Aristizábal-Borja J (2013). Estrategias de forrajeo y características nutricionales de la dieta del mono aullador negro (Alouatta pigra) en un ambiente fragmentado. Xalapa, Veracruz: MSc dissertation, Instituto de Ecología, A. C.
  • Ballesteros J, Reyes K & Racero J (2009). Estructura poblacional y etología de Bradypus variegatus en fragmento de bosque seco tropical, Córdoba-Colombia. Revista MVZ Córdoba, 14(3), 1812-1819.
  • Bisseleua D H B, Missoup A D & Vidal S (2009). Biodiversity conservation, ecosystem functioning, and economic incentives under cocoa agroforestry intensification. Conservation biology, 23(5), 1176-1184.
  • Bombi P, Gnetti V, D’Andrea E, De Cinti B, Taglianti A V, Bologna M A & Matteucci G (2019). Identifying priority sites for insect conservation in forest ecosystems at high resolution: the potential of LiDAR data. Journal of Insect Conservation, 1-10.
  • Bhagwat S A, Willis K J, Birks H J B & Whittaker R J (2008). Agroforestry: a refuge for tropical biodiversity. Trends in ecology & evolution, 23(5), 261-267.
  • Buján S, González-Ferreiro E, Barreiro-Fernández L, Santé I, Corbelle E & Miranda D (2013). Classification of rural landscapes from low-density lidar data: is it theoretically possible? International journal of remote sensing, 34(16), 5666-5689.
  • Cabrera J, Lamelas M T, Montealegre A L & Riva J D L (2014). Estimación de variables dasométricas a partir de datos LiDAR PNOA en masas regulares de Pinus halepensis Mill.
  • Caudill S A, Vaast P & Husband T P (2014). Assessment of small mammal diversity in coffee agroforestry in the Western Ghats, India. Agroforestry systems, 88(1), 173-186.
  • Cassano C R, Barlow J & Pardini R (2014). Forest loss or management intensification? Identifying causes of mammal decline in cacao agroforests. Biological Conservation, 169, 14-22.
  • Cottontail V M, Wellinghausen N & Kalko E K V (2009). Habitat fragmentation and haemoparasites in the common fruit bat, Artibeus jamaicensis (Phyllostomidae) in a tropical lowland forest in Panamá. Parasitology, 136(10), 1133-1145.
  • Cicuzza D, Kessler M, Clough Y, Pitopang R, Leitner D & Tjitrosoedirdjo S S (2011). Conservation value of cacao agroforestry systems for terrestrial herbaceous species in central Sulawesi, Indonesia. Biotropica, 43(6), 755-762.
  • Daily G C, Ceballos G, Pacheco J, Suzán G & Sánchez‐Azofeifa A (2003). Countryside biogeography of neotropical mammals: conservation opportunities in agricultural landscapes of Costa Rica. Conservation biology, 17(6), 1814-1826.
  • De La Ossa J & Lacayo A D L O (2014). Densidad poblacional de Saguinus oedipus (Primates Callitrichidae) y disponibilidad de alimento vegetal, Colosó, Sucre-Colombia. Revista UDCA Actualidad & Divulgación Científica, 17(2).
  • Estrada A & Coates-Estrada R (2002). Bats in continuous forest, forest fragments and in an agricultural mosaic habitat-island at Los Tuxtlas, Mexico. Biological Conservation, 103(2), 237-245.
  • Espinosa-García J A, Uresti-Gil J, Vélez-Izquierdo A, Moctezuma-López G, Inurreta-Aguirre H D & Góngora-González S F (2015). Productividad y rentabilidad potencial del cacao (Theobroma cacao L.) en el trópico mexicano. Revista mexicana de ciencias agrícolas, 6(5), 1051-1063.
  • Flaherty S S, Lurz P W & Patenaude G (2014). Use of LiDAR in the conservation management of the endangered red squirrel (Sciurus vulgaris L.). Journal of Applied Remote Sensing, 8(1), 083592.
  • Fidalgo-González L, Arellano-Pérez S, Álvarez-González J G, Castedo-Dorado F, Ruiz-González A D & González-Ferreiro E (2019). Estimación de la distribución vertical de combustibles finos del dosel de copas en masas de Pinus sylvestris empleando datos LiDAR de baja densidad. Revista de Teledetección, (53), 1-16.
  • Funes P A, Camacho C J N, Calcerrada R R, Jiménez, R V, Bernal R N R & Rojas W R (2017). Evaluación de la correlación entre variables métricas derivadas de tecnología LiDAR y variables del sensor MISR, mediante modelos de regresión con redes neuronales. XXV congreso de la AGE 50 años de congresos de geografía, naturaleza, territorio y ciudad en un mundo global, Madrid, España.
  • García Mayoral L E, Valdez Hernández J I, Luna Cavazos M & López Morgado R (2015). Estructura y diversidad arbórea en sistemas agroforestales de café en la Sierra de Atoyac, Veracruz. Madera y bosques, 21(3), 69-82.
  • Gamage S, Liyanage W K D D, Weerakoon D & Gunwardena A (2009). Habitat quality and availability of the Sri Lanka red slender Loris Loris tardigradus tardigradus (Mammalia: Primates: Lorisidae) in the Kottawa Arboretum. Journal of Threatened Taxa, 1(2), 65-71.
  • Giri C P (2012). Brief overview of remote. Remote sensing of land use and land cover: principles and applications, 1.
  • González-Ferreiro E, Diéguez-Aranda U, Barreiro-Fernández L, Buján S, Barbosa M, Suárez J C, Bye J & Miranda D (2013). A mixed pixel-and region-based approach for using airborne laser scanning data for individual tree crown delineation in Pinus radiata D. Don plantations. International journal of remote sensing, 34(21), 7671-7690.
  • González-Ferreiro E, Arellano-Pérez S, Castedo-Dorado F, Hevia A, Vega J A, Vega-Nieva D, Álvarez-González J G & Ruiz-González A D (2017). Modelling the vertical distribution of canopy fuel load using national forest inventory and low-density airbone laser scanning data. PloS one, 12(4), e0176114.
  • Harvey C A, Tucker N I & Estrada A (2004). Live fences, isolated trees, and windbreaks: tools for conserving biodiversity in fragmented tropical landscapes. Agroforestry and biodiversity conservation in tropical landscapes. Island Press, Washington, DC, 261-289.
  • Ibarra A C, Arriaga S & Estrada A (2001). Avifauna asociada a dos cacaotales tradicionales en la región de la Chontalpa, Tabasco, México. Universidad y Ciencia, 34(17).
  • Islam M, Choudhury P & Bhattacharjee P C (2014). Canopy utilization pattern of Western Hoolock Gibbon Hoolock Hoolock (Mammalia: Primates: Hylobatidae) in the Inner-line Reserve Forest of Barak Valley, Assam, India. Journal of Threatened Taxa, 6(9), 6222-6229.
  • IUCN (1998). Guidelines for Re–introductions. Prepared by the IUCN/SSC Reintroductions Specialist Group– IUCN, Gland, Switzerland and Cambridge, UK.
  • Lesak A A, Radeloff V C, Hawbaker T J, Pidgeon A M, Gobakken T & Contrucci K (2011). Modeling forest songbird species richness using LiDAR-derived measures of forest structure. Remote Sensing of Environment, 115(11), 2823-2835.
  • Lefsky M A, Cohen W B, Parker G G & Harding D J (2002). Lidar remote sensing for ecosystem studies: Lidar, an emerging remote sensing technology that directly measures the three-dimensional distribution of plant canopies, can accurately estimate vegetation structural attributes and should be of particular interest to forest, landscape, and global ecologists. BioScience, 52(1), 19-30.
  • Mbolo M M A, Zekeng J C, Mala W A, Fobane J L, Chimi C D, Ngavounsia T, Nyako C M, Menyene L F E & Tamanjong Y V (2016). The role of cocoa agroforestry systems in conserving forest tree diversity in the Central region of Cameroon. Agroforestry systems, 90(4), 577-590.
  • Martín-García S, Diéguez-Aranda U, Álvarez González J G, Pérez-Cruzado C, Buján S & González-Ferreiro E (2017). Estimación de las existencias maderables de Pinus radiata a escala provincial utilizando datos LiDAR de baja resolución. Bosque (Valdivia), 38(1), 17-28.
  • Marcu C, Stătescu F & Iurist N (2017). A GIS-Based Algorithm to Generate a Lidar Pit-Free Canopy Height Model. Present Environment and Sustainable Development, 11(2), 89-95.
  • Martínez Tobón C D, Aunta Duarte J E & Valero Fandiño J A (2013). Aplicación de datos LiDAR en la estimación del volumen forestal en el parque metropolitano bosque San Carlos. Ciencia E Ingeniería Neogranadina, 23(1), 7-21.
  • Mahadi A T & Siregar V P (2018). Mapping of mangrove coverage and canopy height using LiDAR data at Sangkulirang District, East Kutai, East Borneo. In IOP Conference Series: Earth and Environmental Science (Vol. 176, No. 1, p. 012026). IOP Publishing.
  • McDermott M E, Rodewald A D & Matthews S N (2015). Managing tropical agroforestry for conservation of flocking migratory birds. Agroforestry Systems, 89(3), 383-396.
  • Minton S (2003). Using movement to teach academics: An outline for success. Journal of physical education, recreation & dance, 74(2), 36-40.
  • Mohan M, de Mendonça B A F, Silva C A, Monte M A, de Saboya Ribeiro A S, de Araújo E J G & Cardil A (2019a). Optimizing individual tree detection accuracy and measuring forest uniformity in coconut (Cocos nucifera L.) plantations using airborne laser scanning. Ecological Modelling, 409, 108736.
  • Mohan M, Catts G P, Vaughan B, Roise J P, Silva C A, McCarter J B, Jat P, Gopan G & Maulud K A (2019b). What Makes a Location into a “Favorable Habitat” under Changing Climate and Environmental Conditions? A Pilot Study Focused on Exploring the Differences between Natural and Non-natural Habitats using Airborne LiDAR. Earth and Environmental Science, 228 (1), 012018.
  • Muñoz D, Estrada A, Naranjo E & Ochoa S (2006). Foraging ecology of howler monkeys in a cacao (Theobroma cacao) plantation in Comalcalco, Mexico. American Journal of Primatology, 68(2), 127-142.
  • Muñoz D, Estrada A & Naranjo E (2005). Monos aulladores (Alouatta palliata) en una plantación de cacao (Theobroma cacao) en Tabasco, México: aspectos de la ecología alimentaria. Universidad y Ciencia, (II), 35-44.
  • Orias J V (2009). El jabirú (Jabiru mycteria) en Costa Rica: población y conservación. Biocenosis, 22(1-2).
  • Ortiz-Reyes A D, Valdez-Lazalde J R, los Santos-Posadas D, Héctor M, Ángeles-Pérez G, Paz-Pellat F & Martínez-Trinidad T (2015). Inventario y cartografía de variables del bosque con datos derivados de LiDAR: comparación de métodos. Madera y bosques, 21(3), 111-128.
  • Oporto S, Arriaga-Weiss S L & Castro-Luna A A (2015). Diversidad y composición de murciélagos frugívoros en bosques secundarios de Tabasco, México. Revista mexicana de biodiversidad, 86(2), 431-439.
  • Parent J R, Volin J C & Civco D L (2015). A fully-automated approach to land cover mapping with airborne LiDAR and high-resolution multispectral imagery in a forested suburban landscape. ISPRS Journal of Photogrammetry and Remote Sensing, 104, 18-29.
  • Park W Y, Sohn H G & Heo J (2015). Estimation of forest canopy height using orthoimage-refined digital elevation models. Landscape and ecological engineering, 11(1), 73-86.
  • Pelt R V & Franklin J F (2000). Influence of canopy structure on the understory environment in tall, old-growth, conifer forests. Canadian Journal of Forest Research, 30(8), 1231-1245.P
  • Pozo W E (2009). Uso preferencial de hábitat en primates atélidos en el Parque Nacional Yasuní, Ecuador. Boletín Técnico, Serie Zoológica, 8(4-5).
  • Raghubanshi A S & Tripathi A (2009). Effect of disturbance, habitat fragmentation and alien invasive plants on floral diversity in dry tropical forests of Vindhyan highland: a review. Tropical Ecology, 50(1), 57.
  • Rice R A & Greenberg R (2000). Cacao cultivation and the conservation of biological diversity. AMBIO: A Journal of the Human Environment, 29(3), 167-174.
  • Rugnitz M, Chacón M & Porro R (2009). Guia para Determinação de Carbono em Pequenas Propriedades Rurais. Centro Mundial Agroflorestal (ICRAF) Consórcio Iniciativa Amazônica (IA). Belém, Brasil, 81 p.
  • Salgado-Mora M G, Ibarra-Núñez G, Macías-Sámano J E & López-Báez O (2007). Diversidad arbórea en cacaotales del Soconusco, Chiapas, México. Interciencia, 32(11), 763-768.
  • Sánchez-Gutiérrez F, Pérez-Flores J, Obrador Olan J J, Sol Sánchez Á, & Ruiz-Rosado O (2016a). Estructura arbórea del sistema agroforestal cacao en Cárdenas, Tabasco, México. Revista mexicana de ciencias agrícolas, 7(SPE14), 2695-2709.
  • Sánchez-Gutiérrez F, Pérez-Flores J, Obrador Olan J J, Sol Sánchez Á & Ruiz-Rosado O (2016b). Estructura arbórea del sistema agroforestal cacao en Cárdenas, Tabasco, México. Revista Mexicana de Ciencias Agrícolas, (14).
  • Sánchez-Díaz B, Mata-Zayas E, Gama L, Rullan-Silva C, Vidal-García F & Rincón-Ramírez J (2019). Use of different spectral vegetation indices to determine the presence of mantled howler monkeys (Alouatta palliata G.) on cocoa agrosystems (Theobroma cacao L.). Applied ecology and environmental research, 17(1), 1279-1297.
  • Sambuichi R H, Vidal D B, Piasentin F B, Jardim J G, Viana T G, Menezes A A, Mello D L N, Ahnert D & Baligar V C (2012). Cabruca agroforests in southern Bahia, Brazil: tree component, management practices and tree species conservation. Biodiversity and Conservation, 21(4), 1055-1077.
  • Salazar J C S, Bieng M A N, Melgarejo L M, Di Rienzo J A & Casanoves F (2018). First typology of cacao (Theobroma cacao L.) systems in Colombian Amazonia, based on tree species richness, canopy structure and light availability. PloS one, 13(2), e0191003.
  • Shao G, Shao G & Fei S (2019). Delineation of individual deciduous trees in plantations with low-density LiDAR data. International journal of remote sensing, 40(1), 346-363.
  • Somarriba E, Domınguez L & Harvey C (2004). ¿Cómo evaluar y mejorar el dosel de sombra en cacaotales. Agroforestería en las Américas, 41(42), 120-128.
  • Valenzuela-Córdova B, Mata-Zayas E E, Pacheco-Figueroa C J, Chávez-Gordillo E J, Díaz-López H M, Gama L & Valdez-Leal J D D (2015). Potencial ecoturístico del agrosistema cacao (Theobroma cacao L.) con monos saraguatos (Alouatta palliata Gray) en la Chontalpa, Tabasco. Agroproductividad, 8(5).
  • Valenzuela C B (2018). Evaluación del hábitat disponible para monos saraguatos (Alouatta palliata mexicana) en el agrosistema de cacao en el municipio de Comalcalco, Tabasco, México. Universidad Juárez Autónoma de Tabasco.
  • Vidal-García F & Serio-Silva J C (2011). Potential distribution of Mexican primates: modeling the ecological niche with the maximum entropy algorithm. Primates, 52(3), 261.
  • Villavicencio-Enríquez L (2013). Caracterización agroforestal en sistemas de café tradicional y rústico, en San Miguel, Veracruz, México. Revista Chapingo. Serie ciencias forestales y del ambiente, 19(1), 67-80.
  • Wassihun A N (2019). Sensitivity of Above-Ground Biomass to Terrestrial LIDAR-Derived Tree Height in Berkelah Tropical Rainforest, Malaysia. Journal of the Indian Society of Remote Sensing, 47(5), 789-799.
  • Wan-Mohd-Jaafar W S, Woodhouse I H, Silva C A, Omar H & Hudak A T (2017). Modelling individual tree aboveground biomass using discrete return lidar in lowland dipterocarp forest of Malaysia. Journal of Tropical Forest Science, 465-484.
  • Zárate D A, Andresen E, Estrada A & Serio‐silva J C (2014). Black howler monkey (Alouatta pigra) activity, foraging and seed dispersal patterns in shaded cocoa plantations versus rainforest in southern Mexico. American Journal of Primatology, 76(9), 890-899.
  • Zhao C, Yu D, Xu J, Zhang B & Li D (2019, August). Airborne LiDAR point cloud classification based on transfer learning. In Eleventh International Conference on Digital Image Processing (ICDIP 2019) (Vol. 11179, p. 1117920). International Society for Optics and Photonics.
  • Zamora-Martínez M C (2017). La tecnología LiDAR, herramienta útil para el estudio de la biodiversidad. Revista mexicana de ciencias forestales, 8(39), 4-6.
  • Zuazo I L, Gracia A L M & Gracia M T L (2017). Cartografía de la biomasa aérea total en masas de Pinus radiata D. don a partir de datos públicos Lidar-PNOA e inventario forestal nacional. GeoFocus. Revista Internacional de Ciencia y Tecnología de la Información Geográfica, (20), 87-107.

LiDAR modeling to determine the height of shade canopy tree in cocoa agrosystems as available habitat for wildlife

Year 2022, Volume: 7 Issue: 3, 283 - 293, 15.10.2022
https://doi.org/10.26833/ijeg.978990

Abstract

Agrosystems have different canopy strata due to shade trees that serve as available habitats for endangered species such as birds, reptiles, and mammals. LiDAR is a technology used to assess habitat quality as a support for designing conservation strategies. The objective of this research was to develop a model with data derived from LiDAR to obtain the height of the shade canopy in cocoa agrosystems, as a habitat available for wildlife species. Through the data of the height of the vegetation taken in the field and the data obtained from a LiDAR point cloud, the Canopy Height Model was generated. The data from the mapping of the canopy height model of the agrosystems taken as study sites were validated using the coefficient of determination (R2), mean absolute error (MAE), and the RMSE. The mean canopy height at the study sites was 14.63, 13.84, and 13.95 m, and the results of the validation using the model predicted canopy height shows good agreement with the actual value with an R2 of 0.86, and very low values of MAE=1.88, MSE=5.64, and RMSE=2.37, which indicates that they have an acceptable degree regarding the canopy height model between the LiDAR data and the data taken in the field. Research using LiDAR provides useful information to determine the height of the canopy, in the cocoa agrosystems up to 3 strata are found, this is due to the diversity of tree species used as shade, ranging from timber, fruit, ornamental, which are used as feeding, nesting, and resting of wildlife, in the study area populations of howler monkey species that are listed as endangered by the International Union for Conservation of Nature (IUCN), in addition to other species such as bats and birds, with the presence of these species indicate that the cocoa agrosystems, serve as a habitat for a diversity of species, which is why it is important to conserve these agrosystems in the humid tropics.

References

  • Aguilar-Barojas S (2005). Fórmulas para el cálculo de la muestra en investigaciones de salud. Salud en Tabasco, 11(1-2), 333-338.
  • Alexander C, Korstjens A H, Usher G, Nowak M G, Fredriksson G & Hill R A (2018a). LiDAR patch metrics for object-based clustering of forest types in a tropical rainforest. International Journal of Applied Earth Observation and Geoinformation, 73, 253-261.
  • Alexander C, Korstjens A H & Hill R A (2018b). Influence of micro-topography and crown characteristics on tree height estimations in tropical forests based on LiDAR canopy height models. International journal of applied earth observation and geoinformation, 65, 105-113.
  • Allinne C, Savary S & Avelino J (2016). Delicate balance between pest and disease injuries, yield performance, and other ecosystem services in the complex coffee-based systems of Costa Rica. Agriculture, Ecosystems & Environment, 222, 1-12.
  • Asase A, Ofori‐Frimpong K & Ekpe P K (2010). Impact of cocoa farming on vegetation in an agricultural landscape in Ghana. African Journal of Ecology, 48(2), 338-346.
  • Arcos R, Ruiz A, Altamirano M & Albuja Viteri L H (2013). Uso del estrato vertical por el mono aullador (Alouatta palliata) (Primates: Atelidae) en un bosque subtropical del Noroccidente de Ecuador.
  • Aristizábal-Borja J (2013). Estrategias de forrajeo y características nutricionales de la dieta del mono aullador negro (Alouatta pigra) en un ambiente fragmentado. Xalapa, Veracruz: MSc dissertation, Instituto de Ecología, A. C.
  • Ballesteros J, Reyes K & Racero J (2009). Estructura poblacional y etología de Bradypus variegatus en fragmento de bosque seco tropical, Córdoba-Colombia. Revista MVZ Córdoba, 14(3), 1812-1819.
  • Bisseleua D H B, Missoup A D & Vidal S (2009). Biodiversity conservation, ecosystem functioning, and economic incentives under cocoa agroforestry intensification. Conservation biology, 23(5), 1176-1184.
  • Bombi P, Gnetti V, D’Andrea E, De Cinti B, Taglianti A V, Bologna M A & Matteucci G (2019). Identifying priority sites for insect conservation in forest ecosystems at high resolution: the potential of LiDAR data. Journal of Insect Conservation, 1-10.
  • Bhagwat S A, Willis K J, Birks H J B & Whittaker R J (2008). Agroforestry: a refuge for tropical biodiversity. Trends in ecology & evolution, 23(5), 261-267.
  • Buján S, González-Ferreiro E, Barreiro-Fernández L, Santé I, Corbelle E & Miranda D (2013). Classification of rural landscapes from low-density lidar data: is it theoretically possible? International journal of remote sensing, 34(16), 5666-5689.
  • Cabrera J, Lamelas M T, Montealegre A L & Riva J D L (2014). Estimación de variables dasométricas a partir de datos LiDAR PNOA en masas regulares de Pinus halepensis Mill.
  • Caudill S A, Vaast P & Husband T P (2014). Assessment of small mammal diversity in coffee agroforestry in the Western Ghats, India. Agroforestry systems, 88(1), 173-186.
  • Cassano C R, Barlow J & Pardini R (2014). Forest loss or management intensification? Identifying causes of mammal decline in cacao agroforests. Biological Conservation, 169, 14-22.
  • Cottontail V M, Wellinghausen N & Kalko E K V (2009). Habitat fragmentation and haemoparasites in the common fruit bat, Artibeus jamaicensis (Phyllostomidae) in a tropical lowland forest in Panamá. Parasitology, 136(10), 1133-1145.
  • Cicuzza D, Kessler M, Clough Y, Pitopang R, Leitner D & Tjitrosoedirdjo S S (2011). Conservation value of cacao agroforestry systems for terrestrial herbaceous species in central Sulawesi, Indonesia. Biotropica, 43(6), 755-762.
  • Daily G C, Ceballos G, Pacheco J, Suzán G & Sánchez‐Azofeifa A (2003). Countryside biogeography of neotropical mammals: conservation opportunities in agricultural landscapes of Costa Rica. Conservation biology, 17(6), 1814-1826.
  • De La Ossa J & Lacayo A D L O (2014). Densidad poblacional de Saguinus oedipus (Primates Callitrichidae) y disponibilidad de alimento vegetal, Colosó, Sucre-Colombia. Revista UDCA Actualidad & Divulgación Científica, 17(2).
  • Estrada A & Coates-Estrada R (2002). Bats in continuous forest, forest fragments and in an agricultural mosaic habitat-island at Los Tuxtlas, Mexico. Biological Conservation, 103(2), 237-245.
  • Espinosa-García J A, Uresti-Gil J, Vélez-Izquierdo A, Moctezuma-López G, Inurreta-Aguirre H D & Góngora-González S F (2015). Productividad y rentabilidad potencial del cacao (Theobroma cacao L.) en el trópico mexicano. Revista mexicana de ciencias agrícolas, 6(5), 1051-1063.
  • Flaherty S S, Lurz P W & Patenaude G (2014). Use of LiDAR in the conservation management of the endangered red squirrel (Sciurus vulgaris L.). Journal of Applied Remote Sensing, 8(1), 083592.
  • Fidalgo-González L, Arellano-Pérez S, Álvarez-González J G, Castedo-Dorado F, Ruiz-González A D & González-Ferreiro E (2019). Estimación de la distribución vertical de combustibles finos del dosel de copas en masas de Pinus sylvestris empleando datos LiDAR de baja densidad. Revista de Teledetección, (53), 1-16.
  • Funes P A, Camacho C J N, Calcerrada R R, Jiménez, R V, Bernal R N R & Rojas W R (2017). Evaluación de la correlación entre variables métricas derivadas de tecnología LiDAR y variables del sensor MISR, mediante modelos de regresión con redes neuronales. XXV congreso de la AGE 50 años de congresos de geografía, naturaleza, territorio y ciudad en un mundo global, Madrid, España.
  • García Mayoral L E, Valdez Hernández J I, Luna Cavazos M & López Morgado R (2015). Estructura y diversidad arbórea en sistemas agroforestales de café en la Sierra de Atoyac, Veracruz. Madera y bosques, 21(3), 69-82.
  • Gamage S, Liyanage W K D D, Weerakoon D & Gunwardena A (2009). Habitat quality and availability of the Sri Lanka red slender Loris Loris tardigradus tardigradus (Mammalia: Primates: Lorisidae) in the Kottawa Arboretum. Journal of Threatened Taxa, 1(2), 65-71.
  • Giri C P (2012). Brief overview of remote. Remote sensing of land use and land cover: principles and applications, 1.
  • González-Ferreiro E, Diéguez-Aranda U, Barreiro-Fernández L, Buján S, Barbosa M, Suárez J C, Bye J & Miranda D (2013). A mixed pixel-and region-based approach for using airborne laser scanning data for individual tree crown delineation in Pinus radiata D. Don plantations. International journal of remote sensing, 34(21), 7671-7690.
  • González-Ferreiro E, Arellano-Pérez S, Castedo-Dorado F, Hevia A, Vega J A, Vega-Nieva D, Álvarez-González J G & Ruiz-González A D (2017). Modelling the vertical distribution of canopy fuel load using national forest inventory and low-density airbone laser scanning data. PloS one, 12(4), e0176114.
  • Harvey C A, Tucker N I & Estrada A (2004). Live fences, isolated trees, and windbreaks: tools for conserving biodiversity in fragmented tropical landscapes. Agroforestry and biodiversity conservation in tropical landscapes. Island Press, Washington, DC, 261-289.
  • Ibarra A C, Arriaga S & Estrada A (2001). Avifauna asociada a dos cacaotales tradicionales en la región de la Chontalpa, Tabasco, México. Universidad y Ciencia, 34(17).
  • Islam M, Choudhury P & Bhattacharjee P C (2014). Canopy utilization pattern of Western Hoolock Gibbon Hoolock Hoolock (Mammalia: Primates: Hylobatidae) in the Inner-line Reserve Forest of Barak Valley, Assam, India. Journal of Threatened Taxa, 6(9), 6222-6229.
  • IUCN (1998). Guidelines for Re–introductions. Prepared by the IUCN/SSC Reintroductions Specialist Group– IUCN, Gland, Switzerland and Cambridge, UK.
  • Lesak A A, Radeloff V C, Hawbaker T J, Pidgeon A M, Gobakken T & Contrucci K (2011). Modeling forest songbird species richness using LiDAR-derived measures of forest structure. Remote Sensing of Environment, 115(11), 2823-2835.
  • Lefsky M A, Cohen W B, Parker G G & Harding D J (2002). Lidar remote sensing for ecosystem studies: Lidar, an emerging remote sensing technology that directly measures the three-dimensional distribution of plant canopies, can accurately estimate vegetation structural attributes and should be of particular interest to forest, landscape, and global ecologists. BioScience, 52(1), 19-30.
  • Mbolo M M A, Zekeng J C, Mala W A, Fobane J L, Chimi C D, Ngavounsia T, Nyako C M, Menyene L F E & Tamanjong Y V (2016). The role of cocoa agroforestry systems in conserving forest tree diversity in the Central region of Cameroon. Agroforestry systems, 90(4), 577-590.
  • Martín-García S, Diéguez-Aranda U, Álvarez González J G, Pérez-Cruzado C, Buján S & González-Ferreiro E (2017). Estimación de las existencias maderables de Pinus radiata a escala provincial utilizando datos LiDAR de baja resolución. Bosque (Valdivia), 38(1), 17-28.
  • Marcu C, Stătescu F & Iurist N (2017). A GIS-Based Algorithm to Generate a Lidar Pit-Free Canopy Height Model. Present Environment and Sustainable Development, 11(2), 89-95.
  • Martínez Tobón C D, Aunta Duarte J E & Valero Fandiño J A (2013). Aplicación de datos LiDAR en la estimación del volumen forestal en el parque metropolitano bosque San Carlos. Ciencia E Ingeniería Neogranadina, 23(1), 7-21.
  • Mahadi A T & Siregar V P (2018). Mapping of mangrove coverage and canopy height using LiDAR data at Sangkulirang District, East Kutai, East Borneo. In IOP Conference Series: Earth and Environmental Science (Vol. 176, No. 1, p. 012026). IOP Publishing.
  • McDermott M E, Rodewald A D & Matthews S N (2015). Managing tropical agroforestry for conservation of flocking migratory birds. Agroforestry Systems, 89(3), 383-396.
  • Minton S (2003). Using movement to teach academics: An outline for success. Journal of physical education, recreation & dance, 74(2), 36-40.
  • Mohan M, de Mendonça B A F, Silva C A, Monte M A, de Saboya Ribeiro A S, de Araújo E J G & Cardil A (2019a). Optimizing individual tree detection accuracy and measuring forest uniformity in coconut (Cocos nucifera L.) plantations using airborne laser scanning. Ecological Modelling, 409, 108736.
  • Mohan M, Catts G P, Vaughan B, Roise J P, Silva C A, McCarter J B, Jat P, Gopan G & Maulud K A (2019b). What Makes a Location into a “Favorable Habitat” under Changing Climate and Environmental Conditions? A Pilot Study Focused on Exploring the Differences between Natural and Non-natural Habitats using Airborne LiDAR. Earth and Environmental Science, 228 (1), 012018.
  • Muñoz D, Estrada A, Naranjo E & Ochoa S (2006). Foraging ecology of howler monkeys in a cacao (Theobroma cacao) plantation in Comalcalco, Mexico. American Journal of Primatology, 68(2), 127-142.
  • Muñoz D, Estrada A & Naranjo E (2005). Monos aulladores (Alouatta palliata) en una plantación de cacao (Theobroma cacao) en Tabasco, México: aspectos de la ecología alimentaria. Universidad y Ciencia, (II), 35-44.
  • Orias J V (2009). El jabirú (Jabiru mycteria) en Costa Rica: población y conservación. Biocenosis, 22(1-2).
  • Ortiz-Reyes A D, Valdez-Lazalde J R, los Santos-Posadas D, Héctor M, Ángeles-Pérez G, Paz-Pellat F & Martínez-Trinidad T (2015). Inventario y cartografía de variables del bosque con datos derivados de LiDAR: comparación de métodos. Madera y bosques, 21(3), 111-128.
  • Oporto S, Arriaga-Weiss S L & Castro-Luna A A (2015). Diversidad y composición de murciélagos frugívoros en bosques secundarios de Tabasco, México. Revista mexicana de biodiversidad, 86(2), 431-439.
  • Parent J R, Volin J C & Civco D L (2015). A fully-automated approach to land cover mapping with airborne LiDAR and high-resolution multispectral imagery in a forested suburban landscape. ISPRS Journal of Photogrammetry and Remote Sensing, 104, 18-29.
  • Park W Y, Sohn H G & Heo J (2015). Estimation of forest canopy height using orthoimage-refined digital elevation models. Landscape and ecological engineering, 11(1), 73-86.
  • Pelt R V & Franklin J F (2000). Influence of canopy structure on the understory environment in tall, old-growth, conifer forests. Canadian Journal of Forest Research, 30(8), 1231-1245.P
  • Pozo W E (2009). Uso preferencial de hábitat en primates atélidos en el Parque Nacional Yasuní, Ecuador. Boletín Técnico, Serie Zoológica, 8(4-5).
  • Raghubanshi A S & Tripathi A (2009). Effect of disturbance, habitat fragmentation and alien invasive plants on floral diversity in dry tropical forests of Vindhyan highland: a review. Tropical Ecology, 50(1), 57.
  • Rice R A & Greenberg R (2000). Cacao cultivation and the conservation of biological diversity. AMBIO: A Journal of the Human Environment, 29(3), 167-174.
  • Rugnitz M, Chacón M & Porro R (2009). Guia para Determinação de Carbono em Pequenas Propriedades Rurais. Centro Mundial Agroflorestal (ICRAF) Consórcio Iniciativa Amazônica (IA). Belém, Brasil, 81 p.
  • Salgado-Mora M G, Ibarra-Núñez G, Macías-Sámano J E & López-Báez O (2007). Diversidad arbórea en cacaotales del Soconusco, Chiapas, México. Interciencia, 32(11), 763-768.
  • Sánchez-Gutiérrez F, Pérez-Flores J, Obrador Olan J J, Sol Sánchez Á, & Ruiz-Rosado O (2016a). Estructura arbórea del sistema agroforestal cacao en Cárdenas, Tabasco, México. Revista mexicana de ciencias agrícolas, 7(SPE14), 2695-2709.
  • Sánchez-Gutiérrez F, Pérez-Flores J, Obrador Olan J J, Sol Sánchez Á & Ruiz-Rosado O (2016b). Estructura arbórea del sistema agroforestal cacao en Cárdenas, Tabasco, México. Revista Mexicana de Ciencias Agrícolas, (14).
  • Sánchez-Díaz B, Mata-Zayas E, Gama L, Rullan-Silva C, Vidal-García F & Rincón-Ramírez J (2019). Use of different spectral vegetation indices to determine the presence of mantled howler monkeys (Alouatta palliata G.) on cocoa agrosystems (Theobroma cacao L.). Applied ecology and environmental research, 17(1), 1279-1297.
  • Sambuichi R H, Vidal D B, Piasentin F B, Jardim J G, Viana T G, Menezes A A, Mello D L N, Ahnert D & Baligar V C (2012). Cabruca agroforests in southern Bahia, Brazil: tree component, management practices and tree species conservation. Biodiversity and Conservation, 21(4), 1055-1077.
  • Salazar J C S, Bieng M A N, Melgarejo L M, Di Rienzo J A & Casanoves F (2018). First typology of cacao (Theobroma cacao L.) systems in Colombian Amazonia, based on tree species richness, canopy structure and light availability. PloS one, 13(2), e0191003.
  • Shao G, Shao G & Fei S (2019). Delineation of individual deciduous trees in plantations with low-density LiDAR data. International journal of remote sensing, 40(1), 346-363.
  • Somarriba E, Domınguez L & Harvey C (2004). ¿Cómo evaluar y mejorar el dosel de sombra en cacaotales. Agroforestería en las Américas, 41(42), 120-128.
  • Valenzuela-Córdova B, Mata-Zayas E E, Pacheco-Figueroa C J, Chávez-Gordillo E J, Díaz-López H M, Gama L & Valdez-Leal J D D (2015). Potencial ecoturístico del agrosistema cacao (Theobroma cacao L.) con monos saraguatos (Alouatta palliata Gray) en la Chontalpa, Tabasco. Agroproductividad, 8(5).
  • Valenzuela C B (2018). Evaluación del hábitat disponible para monos saraguatos (Alouatta palliata mexicana) en el agrosistema de cacao en el municipio de Comalcalco, Tabasco, México. Universidad Juárez Autónoma de Tabasco.
  • Vidal-García F & Serio-Silva J C (2011). Potential distribution of Mexican primates: modeling the ecological niche with the maximum entropy algorithm. Primates, 52(3), 261.
  • Villavicencio-Enríquez L (2013). Caracterización agroforestal en sistemas de café tradicional y rústico, en San Miguel, Veracruz, México. Revista Chapingo. Serie ciencias forestales y del ambiente, 19(1), 67-80.
  • Wassihun A N (2019). Sensitivity of Above-Ground Biomass to Terrestrial LIDAR-Derived Tree Height in Berkelah Tropical Rainforest, Malaysia. Journal of the Indian Society of Remote Sensing, 47(5), 789-799.
  • Wan-Mohd-Jaafar W S, Woodhouse I H, Silva C A, Omar H & Hudak A T (2017). Modelling individual tree aboveground biomass using discrete return lidar in lowland dipterocarp forest of Malaysia. Journal of Tropical Forest Science, 465-484.
  • Zárate D A, Andresen E, Estrada A & Serio‐silva J C (2014). Black howler monkey (Alouatta pigra) activity, foraging and seed dispersal patterns in shaded cocoa plantations versus rainforest in southern Mexico. American Journal of Primatology, 76(9), 890-899.
  • Zhao C, Yu D, Xu J, Zhang B & Li D (2019, August). Airborne LiDAR point cloud classification based on transfer learning. In Eleventh International Conference on Digital Image Processing (ICDIP 2019) (Vol. 11179, p. 1117920). International Society for Optics and Photonics.
  • Zamora-Martínez M C (2017). La tecnología LiDAR, herramienta útil para el estudio de la biodiversidad. Revista mexicana de ciencias forestales, 8(39), 4-6.
  • Zuazo I L, Gracia A L M & Gracia M T L (2017). Cartografía de la biomasa aérea total en masas de Pinus radiata D. don a partir de datos públicos Lidar-PNOA e inventario forestal nacional. GeoFocus. Revista Internacional de Ciencia y Tecnología de la Información Geográfica, (20), 87-107.
There are 74 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Baltazar Sanchez Diaz 0000-0003-4165-4302

Ena Edith Mata-zayas This is me

Lilia Maria Gama-campillo This is me

Joaquin Alberto Rincon-ramirez This is me

Francisca Vidal-garcia This is me

Cristobal Daniel Rullan-silva This is me

Facundo Sanchez-gutierrez This is me

Publication Date October 15, 2022
Published in Issue Year 2022 Volume: 7 Issue: 3

Cite

APA Sanchez Diaz, B., Mata-zayas, E. E., Gama-campillo, L. M., Rincon-ramirez, J. A., et al. (2022). LiDAR modeling to determine the height of shade canopy tree in cocoa agrosystems as available habitat for wildlife. International Journal of Engineering and Geosciences, 7(3), 283-293. https://doi.org/10.26833/ijeg.978990
AMA Sanchez Diaz B, Mata-zayas EE, Gama-campillo LM, Rincon-ramirez JA, Vidal-garcia F, Rullan-silva CD, Sanchez-gutierrez F. LiDAR modeling to determine the height of shade canopy tree in cocoa agrosystems as available habitat for wildlife. IJEG. October 2022;7(3):283-293. doi:10.26833/ijeg.978990
Chicago Sanchez Diaz, Baltazar, Ena Edith Mata-zayas, Lilia Maria Gama-campillo, Joaquin Alberto Rincon-ramirez, Francisca Vidal-garcia, Cristobal Daniel Rullan-silva, and Facundo Sanchez-gutierrez. “LiDAR Modeling to Determine the Height of Shade Canopy Tree in Cocoa Agrosystems As Available Habitat for Wildlife”. International Journal of Engineering and Geosciences 7, no. 3 (October 2022): 283-93. https://doi.org/10.26833/ijeg.978990.
EndNote Sanchez Diaz B, Mata-zayas EE, Gama-campillo LM, Rincon-ramirez JA, Vidal-garcia F, Rullan-silva CD, Sanchez-gutierrez F (October 1, 2022) LiDAR modeling to determine the height of shade canopy tree in cocoa agrosystems as available habitat for wildlife. International Journal of Engineering and Geosciences 7 3 283–293.
IEEE B. Sanchez Diaz, E. E. Mata-zayas, L. M. Gama-campillo, J. A. Rincon-ramirez, F. Vidal-garcia, C. D. Rullan-silva, and F. Sanchez-gutierrez, “LiDAR modeling to determine the height of shade canopy tree in cocoa agrosystems as available habitat for wildlife”, IJEG, vol. 7, no. 3, pp. 283–293, 2022, doi: 10.26833/ijeg.978990.
ISNAD Sanchez Diaz, Baltazar et al. “LiDAR Modeling to Determine the Height of Shade Canopy Tree in Cocoa Agrosystems As Available Habitat for Wildlife”. International Journal of Engineering and Geosciences 7/3 (October 2022), 283-293. https://doi.org/10.26833/ijeg.978990.
JAMA Sanchez Diaz B, Mata-zayas EE, Gama-campillo LM, Rincon-ramirez JA, Vidal-garcia F, Rullan-silva CD, Sanchez-gutierrez F. LiDAR modeling to determine the height of shade canopy tree in cocoa agrosystems as available habitat for wildlife. IJEG. 2022;7:283–293.
MLA Sanchez Diaz, Baltazar et al. “LiDAR Modeling to Determine the Height of Shade Canopy Tree in Cocoa Agrosystems As Available Habitat for Wildlife”. International Journal of Engineering and Geosciences, vol. 7, no. 3, 2022, pp. 283-9, doi:10.26833/ijeg.978990.
Vancouver Sanchez Diaz B, Mata-zayas EE, Gama-campillo LM, Rincon-ramirez JA, Vidal-garcia F, Rullan-silva CD, Sanchez-gutierrez F. LiDAR modeling to determine the height of shade canopy tree in cocoa agrosystems as available habitat for wildlife. IJEG. 2022;7(3):283-9.