Year 2024,
Volume: 9 Issue: 3, 390 - 405, 31.10.2024
Muhammet Bahadır
,
Fatih Ocak
,
Halithan Şen
Project Number
PYO.İTB.1908.23.004
References
- 1. Hyndman, D., & Hyndman, D. (2015). Natural hazard and disaster (50. Ed.). Cengage. Boston. ISBN: 978-1-305-58169-2. www.cengagebrain.com
- 2. Özey, R., & Ünlü, M. (2021). Afetler ve afet yönetimi. Aktif Yayınevi: İstanbul.
- 3. Keller E. A., & DeVecchio D. E. (2019). Natural Hazards, Earth’s Processes as Hazards, Disasters and Catastrophes (50. Ed.). Routledge. New York. ISBN: 9781315164298. www.routledgetextbooks.com/textbooks/9781138057227/
- 4. Cassidy, J. F. (2013). Earthquake, in: Bobrowsky, P.T (Ed.)., Encyclopedia of Earth Sciences Series: Encyclopedia of Natural Hazards. Springer, pp. 208-223. ISBN: 978-90-481-8699-0. https://link.springer.com/referenceworkentry/10.1007/978-1-4020-4399-4_104
- 5. McKenzie, D. (1972). Active tectonics of the Mediterranean region. Geophysical Journal of the Royal Astronomical Society, 30 (2), 109-185. https://doi.org/10.1111/j.1365-246X.1972.tb02351.x
- 6. Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Cakmak, R., Ozener, H., Kadirov, F., Guliev, I., Stepanyan, R., Nadariya, M., Hahubia, G., Mahmoud, S., Sakr, K., ArRajehi, A., Paradissis, D., Al-Aydrus, A., Prilepin, M., Guseva, T., Evren, E., Dmitrotsa, A., Filikov, S.V., Gomez, F., Al-Ghazzi, R., & Karam, G. (2006). GPS constraints on continental deformation in the Africa‐Arabia‐Eurasia continental collision zone and implications for the dynamics of plate interactions. Journal of Geophysical Research: Solid Earth. 111, (B5). https://doi.org/10.1029/2005JB004051
- 7. Le Pichon, X., & Kreemer, C. (2010). The Miocene-to-present kinematic evolution of the Eastern Mediterranean and Middle East and its implications for dynamics. Annual Review of Earth and Planetary Sciences, 38, 323-351. https://doi.org/10.1146/annurev-earth-040809-152419
- 8. Bozkurt, E. (2001). Neotectonics of Turkey–a synthesis. Geodinamica Acta, 14 (1-3), 3-30. https://doi.org/10.1080/09853111.2001.11432432
- 9. Nemutlu, Ö. F., Sarı, A., & Balun, B. (2023). Comparison of Actual Loss of Life and Structural Damage in 06 February 2023 Kahramanmaraş Earthquakes (Mw 7.7-Mw 7.6) with Estimated Values. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 23(5), 1222-1234. https://doi.org/10.35414/akufemubid.1302254
- 10. Zambrano, A. M., Perez, I., Palau, C., & Esteve, M. (2017). Technologies of Internet of Things applied to an Earthquake Early Warning System. Future Generation Computer Systems, 75, 206-215. https://doi.org/10.1016/j.future.2016.10.009
- 11. Cremen, G., Bozzoni, F., Pistorio, S., & Galasso. C. (2022). Developing a risk-informed decision-support system for earthquake early warning at a critical seaport. Reliability Engineering & System Safety, 218 (A), 108035. https://doi.org/10.1016/j.ress.2021.108035
- 12. Lin, Y., Chan, R. W. K., & Tagawa, H. (2020). Earthquake early warning-enabled smart base isolation system. Automation in Construction, 115, 103203. https://doi.org/10.1016/j.autcon.2020.103203
- 13. McBride, S. K., Sumy, D. F., Llenos, A. L., Parker, G. A., McGuire, J., Saunders, J. K., Meier, M, Schuback, P., Given, D., & De Groot, R. (2023). Latency and geofence testing of wireless emergency alerts intended for the ShakeAlert® earthquake early warning system for the West Coast of the United States of America. Safety Science, 157, 105898. https://doi.org/10.1016/j.ssci.2022.105898
- 14. Proag, V. (2014). The Concept of Vulnerability and Resilience. Procedia Economics and Finance, 18, 369-376. https://doi.org/10.1016/S2212-5671(14)00952-6
- 15. Bello, O. M., & Aina, Y. A. (2014). Satellite remote sensing as a tool in disaster management and sustainable development: towards a synergistic approach. Procedia-Soc. Behav. Sci., 120, 365-373. https://doi.org/10.1016/j.sbspro.2014.02.114
- 16. Msabi, M. M., & Makonyo, M. (2021). Flood susceptibility mapping using GIS and multi-criteria decision analysis: A case of Dodoma region, central Tanzania. Remote Sens. Appl. Soc. Environ., 21, 100445. https://doi.org/10.1016/j.rsase.2020.100445
- 17. Al Kalbani, K., & Rahman, A. A. (2022). 3D city model for monitoring flash flood risks in Salalah, Oman. International Journal of Engineering and Geosciences, 7(1), 17-23. https://doi.org/10.26833/ijeg.857971
- 18. Partigöç, N. S., & Dinçer, C. (2024). Coğrafi bilgi sistemleri (CBS) tabanlı afet risk analizi: Denizli ili örneği. Geomatik, 9(1), 27-44. https://doi.org/10.29128/geomatik.1261051
- 19. Demir, M., & Altaş, N. T. (2024). Kars kentinde deprem hasar risk potansiyeli taşıyan alanların CBS tabanlı AHP analizlerine dayalı olarak belirlenmesi. Geomatik, 9(1), 123-140. https://doi.org/10.29128/geomatik.1375650
- 20. Mancini, F., Ceppi, C., & Ritrovato, G. (2010). GIS and statistical analysis for landslide susceptibility mapping in the Daunia area, Italy. Nat. Hazards Earth Syst. Sci., 10, 1851-1864. https://doi.org/10.5194/nhess-10-1851-2010
- 21. Vicente, R., Parodi, S., Lagomarsino, S., Vartum, H., & Silva, J.A.R.M. (2011). Seismic vulnerability and risk assessment: case study of the historic city centre of Coimbra, Portugal. Bull Earthquake Eng., 9, 1067-1096. https://doi.org/10.1007/s10518-010-9233-3
- 22. Tarragüel, A. A., Krol, B., & Van Westen, C. (2012). Analysing the possible impact of landslides and avalanches on cultural heritage in Upper Svaneti, Georgia. J. Cult. Herit., 13, 453-461. https://doi.org/10.1016/j.culher.2012.01.012
- 23. Zebardast, E. (2013). Constructing a social vulnerability index to earthquake hazards using a hybrid factor analysis and analytic network process (F’ANP) model. Nat Hazards., 65, 1331-1359. https://doi.org/10.1007/s11069-012-0412-1
- 24. Romanescu, G., & Nicu, I. (2014). Risk maps for gully erosion processes affecting archaeological sites in Moldavia, Romania. Z. Geomorphol., 58 (4), 509–523. https://doi.org/10.1127/0372-8854/2014/0133
- 25. Nicu, I.C., & Asăndulesei, A. (2018). GIS-based evaluation of diagnostic areas in landslide susceptibility analysis of Bahluieț River Basin (Moldavian Plateau, NE Romania). Are Neolithic sites in danger? Geomorphology., 314, 27–41. https://doi.org/10.1016/j.geomorph.2018.04.010
- 26. Shahri, A.A., Spross, J., Johansson, F., & Larsson, S. (2019). Landslide susceptibility hazard map in southwest Sweden using artificial neural network. Catena., 183, 104225. https://doi.org/10.1016/j.catena.2019.104225
- 27. Şen, H., Aylar, F., Zeybek, H. İ., Şatır, E., & Enterili, Z. (2022). Budaközü Çayı Havzasının (Sungurlu/Çorum) RUSLE Modeli ile Erozyon Risk Analizinin Değerlendirilmesi, in: Sönmez, S. (Ed.), Sosyal, Beşeri ve İdari Bilimler Alanında Yeni Trendler II. Duvar Yayınları, İzmir, pp. 331-360. https://www.duvaryayinlari.com/Webkontrol/IcerikYonetimi/Dosyalar/sosyal-2-sistem-compressed_icerik_g3496_Jpi8Ggrw.pdf
- 28. Endalew, T., & Biru, D. (2022). Soil erosion risk and sediment yield assessment with Revised Universal Soil Loss Equation and GIS: The case of Nesha watershed, Southwestern Ethiopia. Result in Geophysical Sciences., 12, 100049. https://doi.org/10.1016/j.ringps.2022.100049
- 29. Olika, G., Fikadu, G., & Gedefa, B. (2023). GIS based soil loss assessment using RUSLE model: A case of Horo district, western Ethiopia. Heliyon., 9 (2), e13313. https://doi.org/10.1016/j.heliyon.2023.e13313
- 30. Sichugova, L., & Fazilova, D. (20249. Study of the seismic activity of the Almalyk-Angren industrial zone based on lineament analysis. International Journal of Engineering and Geosciences, 9(1), 1-11. https://doi.org/10.26833/ijeg.1192118
- 31. Banica A., Rosu L., Muntele I., & Grozavu A. (2017). Towards Urban Resilience: A Multi-Criteria Analysis of Seismic Vulnerability in Iasi City (Romania). Sustainability. 9 (2), 270. https://doi.org/10.3390/su9020270
- 32. Kermanshah, A, & Derrible, S. (2016). A geographical and multi-criteria vulnerability assessment of transportation networks against extreme earthquakes. Reliability Engineering & System Safety, 153, 39-49. https://doi.org/10.1016/j.ress.2016.04.007
- 33. Shadmaan, S. Md., & Samsunnahar, P. (20239. An assessment of earthquake vulnerability by multi-criteria decision-making method. Geohazard Mechanics, 1(1), 94-102. https://doi.org/10.1016/j.ghm.2022.11.002
- 34. Yariyan, P., Zabihi, H., Wolf, I.D., Karami, M., & Amiriyan, S. (2020). Earthquake risk assessment using an integrated Fuzzy Analytic Hierarchy Process with Artificial Neural Networks based on GIS: A case study of Sanandaj in Iran. International Journal of Disaster Risk Reduction, 50, 101705. https://doi.org/10.1016/j.ijdrr.2020.101705
- 35. Ocak, F., & Bahadır, M. (2022). Analytical Hierarchy Process for earthquake susceptibility analysis using GIS techniques: A case study Basin of Lake Ladik in Samsun, Turkey. The Journal of Kesit Academy, 33, 322-348. DOI: 10.29228/kesit.64705
- 36. Turoğlu, H. (2004). Zemin sıvılaşmasının 17 Ağustos 1999 depreminde Adapazarı’ndaki hasara etkisi. İstanbul Üniversitesi Edebiyat Fakültesi Coğrafya Bölümü Coğrafya Dergisi, 12, 63-74. Retrieved from https://dergipark.org.tr/tr/download/article-file/231194
- 37. Sönmez, M. E. (2011). An analysis of the earthquake damage risk based on Geographic Information System (GIS)as example: Zeytinburnu (Istanbul). Turkish Geographical Review, 56, 11-22. Retrieved from https://dergipark.org.tr/tr/pub/tcd/issue/21225/227787
- 38. Özşahin, E. (2014). Coğrafi Bilgi Sistemleri (CBS) ve Analitik Hiyerarşi Süreci (AHS) kullanılarak Tekirdağ ilinde deprem hasar riski analizi. International Journal of Human Sciences, 11(1), 861-879. http://dx.doi.org/10.14687/ijhs.v11i1.2816
- 39. Palchaudhuri, M., & Biswas, S. (2016). Application of AHP with GIS in drought risk assessment for Puruliya district, India, Natural Hazards. 84. 1905–1920. https://doi.org/10.1007/s11069-016-2526-3
- 40. Ocak, F. (2023). Ladik Gölü Havzası’nda (Samsun) akıllı doğal afet yönetimi. Unpublished Doctoral Thesis. Ondokuz Mayıs University Graduate Education Institute, Department of Geography, 808247, Samsun.
- 41.Saaty, T. L. (1989). Hierarchical-Multiobjective systems. Control-Theory and Advanced Technology, 5(4). 485-489.
- 42. Intarawichian, N., & Dasananda, S. (2010). Analytical hierarchy process for landslide susceptibility mapping in lower Mae Chaem Watershed, Northern Thailand. Suranaree Journal of Science & Technology. 17 (3). 1-16. https://www.thaiscience.info/journals/
- 43. Cai, Z., Zhong, S., Jiang, W., & Lei, M. (2011). A schema of ecological environment sensitivity evaluation based on GIS, International Conference on Multimedia Technology, Hangzhou, China, 2011, 5250-5255. https://doi.org/10.1109/ICMT.2011.6002704
- 44. Goepel, K. D. (2013). Implementing the analytic hierarchy process as a standard method for multi-criteria decision making in corporate enterprises-A new AHP excel template with multiple inputs. Proceedings of the International Symposium on the Analytic Hierarchy Process, Kuala Lumpur, 2013. https://doi.org/10.13033/isahp.y2013.047
- 45. Fentahun, T. M., Bagyaraj, M., Melesse, M. A., Korme, T. (2021). Seismic hazard sensitivity assessment in the Ethiopian Rift, using an integrated approach of AHP and DInSAR methods. The Egyptian Journal of Remote Sensing and Space Sciences, 24(3), Part 2, 735-744. https://doi.org/10.1016/j.ejrs.2021.05.001
- 46. Malakar, S., Rai, A. K. (2023). Estimating seismic vulnerability in West Bengal by AHP-WSM and AHP-VIKOR. Natural Hazards Research, 3(3), 464,473. https://doi.org/10.1016/j.nhres.2023.06.001
- 47. Bhadran, A., Duarah, B. P, Girishbai, D., Achu, A. L., Lahon, S., Jesiya, N. P., Vijesh, V. K., Gopinat, G. (2024). Multi-model seismic susceptibility assessment of the 1950 great Assam earthquake in the Eastern Himalayan front. Geosystems and Geoenvironment, 3(3), 100270. https://doi.org/10.1016/j.geogeo.2024.100270
- 48. Erinç, S. (2000). Jeomorfoloji-I. Der Yayınları.
- 49. Nichols, D. R., & Buchanan-Banks, J. M. (1974). Seismic hazards and land-use planning. U.S. Geology Survey, Circular 690. https://doi.org/10.3133/cir690
- 50. Vallejo, L. E., & Shettima, M. (1996). Fault movement and its impact on ground defor-mations and engineering structures. Engineering Geology, 43(2-3), 119-133. https://doi.org/10.1016/0013-7952(96)00055-5
- 51. Bayrak, E., 2019. Estimation of the peak ground acceleration for Eastern Turkey. European Journal of Science and Technology, (17), 676-681. https://doi.org/10.31590/ejosat.637938
- 52. Nath, S. K., & Thingbaijam, K. K. S. (2009). Seismic hazard assessment-a holistic micro-zonation approach. Nat. Hazards Earth Syst. Sci., 9(4), p. 1445-1459. https://doi.org/10.5194/nhess-9-1445-2009
- 53. Karadaş, A., & Öner, E. (2021). 30 Ekim 2020 Effects of the alluvial geomorphology on the damage of the Sisam Earthquake in the Bornova Plain. Journal of Geography, 42, 139-153. https://doi.org/10.26650/JGEOG2021-872890
- 54. Alpaslan, N. (2013). Soil liquefaction and mechanism. Batman University Journal of Life Sciences, 3(2), 67-89. Retrieved from https://dergipark.org.tr/tr/pub/buyasambid/issue/29820/320770
Determination of the development of settlements above earthquake susceptibility classes in Atakum district (Samsun/Türkiye)
Year 2024,
Volume: 9 Issue: 3, 390 - 405, 31.10.2024
Muhammet Bahadır
,
Fatih Ocak
,
Halithan Şen
Abstract
It is not possible to predict and prevent earthquakes in advance. Until now only a few seconds of time can be saved with prediction studies. Therefore, the most logical solution to overcome earthquakes with the least damage is to implement risk management plans. One of the most important studies carried out within the scope of these plans is to determine the earthquake susceptibility of the regions and accordingly, to identify the suitable areas for new settlements. The purpose of the study is to evaluate the extent of earthquake susceptibility in Atakum district and analyse its impact on the developing urban area. To determine the susceptibility, Geographic Information Systems (GIS) and Analytical Hierarchy Process (AHP) were used. For the application of the AHP method, 6 main geographical factors and 28 sub-factors including lithology, slope, distance to fault lines, landforms, maximum ground acceleration and soil permeability were analysed. The rate of weight was calculated for all factors and an earthquake susceptibility map was produced by weighted overlay. Then, the urban development process of Atakum district was determined with satellite images. In order to examine the development of the urban area on earthquake susceptibility classes in the last 23 years, Landsat 7 ETM for 2000 and Landsat 8 OLI/TIRS satellite images for 2013 and 2023 were used. According to the results obtained, the residential areas of Atakum city, especially on the coastline, in the embankment areas and on the alluvial plain floors, are located in the high and very high earthquake susceptibility area.
Supporting Institution
Ondokuz Mayıs University Scientific Research Projects
Project Number
PYO.İTB.1908.23.004
Thanks
This study was supported by Ondokuz Mayıs University Scientific Research Projects Coordination with the project number PYO.İTB.1908.23.004.
References
- 1. Hyndman, D., & Hyndman, D. (2015). Natural hazard and disaster (50. Ed.). Cengage. Boston. ISBN: 978-1-305-58169-2. www.cengagebrain.com
- 2. Özey, R., & Ünlü, M. (2021). Afetler ve afet yönetimi. Aktif Yayınevi: İstanbul.
- 3. Keller E. A., & DeVecchio D. E. (2019). Natural Hazards, Earth’s Processes as Hazards, Disasters and Catastrophes (50. Ed.). Routledge. New York. ISBN: 9781315164298. www.routledgetextbooks.com/textbooks/9781138057227/
- 4. Cassidy, J. F. (2013). Earthquake, in: Bobrowsky, P.T (Ed.)., Encyclopedia of Earth Sciences Series: Encyclopedia of Natural Hazards. Springer, pp. 208-223. ISBN: 978-90-481-8699-0. https://link.springer.com/referenceworkentry/10.1007/978-1-4020-4399-4_104
- 5. McKenzie, D. (1972). Active tectonics of the Mediterranean region. Geophysical Journal of the Royal Astronomical Society, 30 (2), 109-185. https://doi.org/10.1111/j.1365-246X.1972.tb02351.x
- 6. Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Cakmak, R., Ozener, H., Kadirov, F., Guliev, I., Stepanyan, R., Nadariya, M., Hahubia, G., Mahmoud, S., Sakr, K., ArRajehi, A., Paradissis, D., Al-Aydrus, A., Prilepin, M., Guseva, T., Evren, E., Dmitrotsa, A., Filikov, S.V., Gomez, F., Al-Ghazzi, R., & Karam, G. (2006). GPS constraints on continental deformation in the Africa‐Arabia‐Eurasia continental collision zone and implications for the dynamics of plate interactions. Journal of Geophysical Research: Solid Earth. 111, (B5). https://doi.org/10.1029/2005JB004051
- 7. Le Pichon, X., & Kreemer, C. (2010). The Miocene-to-present kinematic evolution of the Eastern Mediterranean and Middle East and its implications for dynamics. Annual Review of Earth and Planetary Sciences, 38, 323-351. https://doi.org/10.1146/annurev-earth-040809-152419
- 8. Bozkurt, E. (2001). Neotectonics of Turkey–a synthesis. Geodinamica Acta, 14 (1-3), 3-30. https://doi.org/10.1080/09853111.2001.11432432
- 9. Nemutlu, Ö. F., Sarı, A., & Balun, B. (2023). Comparison of Actual Loss of Life and Structural Damage in 06 February 2023 Kahramanmaraş Earthquakes (Mw 7.7-Mw 7.6) with Estimated Values. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 23(5), 1222-1234. https://doi.org/10.35414/akufemubid.1302254
- 10. Zambrano, A. M., Perez, I., Palau, C., & Esteve, M. (2017). Technologies of Internet of Things applied to an Earthquake Early Warning System. Future Generation Computer Systems, 75, 206-215. https://doi.org/10.1016/j.future.2016.10.009
- 11. Cremen, G., Bozzoni, F., Pistorio, S., & Galasso. C. (2022). Developing a risk-informed decision-support system for earthquake early warning at a critical seaport. Reliability Engineering & System Safety, 218 (A), 108035. https://doi.org/10.1016/j.ress.2021.108035
- 12. Lin, Y., Chan, R. W. K., & Tagawa, H. (2020). Earthquake early warning-enabled smart base isolation system. Automation in Construction, 115, 103203. https://doi.org/10.1016/j.autcon.2020.103203
- 13. McBride, S. K., Sumy, D. F., Llenos, A. L., Parker, G. A., McGuire, J., Saunders, J. K., Meier, M, Schuback, P., Given, D., & De Groot, R. (2023). Latency and geofence testing of wireless emergency alerts intended for the ShakeAlert® earthquake early warning system for the West Coast of the United States of America. Safety Science, 157, 105898. https://doi.org/10.1016/j.ssci.2022.105898
- 14. Proag, V. (2014). The Concept of Vulnerability and Resilience. Procedia Economics and Finance, 18, 369-376. https://doi.org/10.1016/S2212-5671(14)00952-6
- 15. Bello, O. M., & Aina, Y. A. (2014). Satellite remote sensing as a tool in disaster management and sustainable development: towards a synergistic approach. Procedia-Soc. Behav. Sci., 120, 365-373. https://doi.org/10.1016/j.sbspro.2014.02.114
- 16. Msabi, M. M., & Makonyo, M. (2021). Flood susceptibility mapping using GIS and multi-criteria decision analysis: A case of Dodoma region, central Tanzania. Remote Sens. Appl. Soc. Environ., 21, 100445. https://doi.org/10.1016/j.rsase.2020.100445
- 17. Al Kalbani, K., & Rahman, A. A. (2022). 3D city model for monitoring flash flood risks in Salalah, Oman. International Journal of Engineering and Geosciences, 7(1), 17-23. https://doi.org/10.26833/ijeg.857971
- 18. Partigöç, N. S., & Dinçer, C. (2024). Coğrafi bilgi sistemleri (CBS) tabanlı afet risk analizi: Denizli ili örneği. Geomatik, 9(1), 27-44. https://doi.org/10.29128/geomatik.1261051
- 19. Demir, M., & Altaş, N. T. (2024). Kars kentinde deprem hasar risk potansiyeli taşıyan alanların CBS tabanlı AHP analizlerine dayalı olarak belirlenmesi. Geomatik, 9(1), 123-140. https://doi.org/10.29128/geomatik.1375650
- 20. Mancini, F., Ceppi, C., & Ritrovato, G. (2010). GIS and statistical analysis for landslide susceptibility mapping in the Daunia area, Italy. Nat. Hazards Earth Syst. Sci., 10, 1851-1864. https://doi.org/10.5194/nhess-10-1851-2010
- 21. Vicente, R., Parodi, S., Lagomarsino, S., Vartum, H., & Silva, J.A.R.M. (2011). Seismic vulnerability and risk assessment: case study of the historic city centre of Coimbra, Portugal. Bull Earthquake Eng., 9, 1067-1096. https://doi.org/10.1007/s10518-010-9233-3
- 22. Tarragüel, A. A., Krol, B., & Van Westen, C. (2012). Analysing the possible impact of landslides and avalanches on cultural heritage in Upper Svaneti, Georgia. J. Cult. Herit., 13, 453-461. https://doi.org/10.1016/j.culher.2012.01.012
- 23. Zebardast, E. (2013). Constructing a social vulnerability index to earthquake hazards using a hybrid factor analysis and analytic network process (F’ANP) model. Nat Hazards., 65, 1331-1359. https://doi.org/10.1007/s11069-012-0412-1
- 24. Romanescu, G., & Nicu, I. (2014). Risk maps for gully erosion processes affecting archaeological sites in Moldavia, Romania. Z. Geomorphol., 58 (4), 509–523. https://doi.org/10.1127/0372-8854/2014/0133
- 25. Nicu, I.C., & Asăndulesei, A. (2018). GIS-based evaluation of diagnostic areas in landslide susceptibility analysis of Bahluieț River Basin (Moldavian Plateau, NE Romania). Are Neolithic sites in danger? Geomorphology., 314, 27–41. https://doi.org/10.1016/j.geomorph.2018.04.010
- 26. Shahri, A.A., Spross, J., Johansson, F., & Larsson, S. (2019). Landslide susceptibility hazard map in southwest Sweden using artificial neural network. Catena., 183, 104225. https://doi.org/10.1016/j.catena.2019.104225
- 27. Şen, H., Aylar, F., Zeybek, H. İ., Şatır, E., & Enterili, Z. (2022). Budaközü Çayı Havzasının (Sungurlu/Çorum) RUSLE Modeli ile Erozyon Risk Analizinin Değerlendirilmesi, in: Sönmez, S. (Ed.), Sosyal, Beşeri ve İdari Bilimler Alanında Yeni Trendler II. Duvar Yayınları, İzmir, pp. 331-360. https://www.duvaryayinlari.com/Webkontrol/IcerikYonetimi/Dosyalar/sosyal-2-sistem-compressed_icerik_g3496_Jpi8Ggrw.pdf
- 28. Endalew, T., & Biru, D. (2022). Soil erosion risk and sediment yield assessment with Revised Universal Soil Loss Equation and GIS: The case of Nesha watershed, Southwestern Ethiopia. Result in Geophysical Sciences., 12, 100049. https://doi.org/10.1016/j.ringps.2022.100049
- 29. Olika, G., Fikadu, G., & Gedefa, B. (2023). GIS based soil loss assessment using RUSLE model: A case of Horo district, western Ethiopia. Heliyon., 9 (2), e13313. https://doi.org/10.1016/j.heliyon.2023.e13313
- 30. Sichugova, L., & Fazilova, D. (20249. Study of the seismic activity of the Almalyk-Angren industrial zone based on lineament analysis. International Journal of Engineering and Geosciences, 9(1), 1-11. https://doi.org/10.26833/ijeg.1192118
- 31. Banica A., Rosu L., Muntele I., & Grozavu A. (2017). Towards Urban Resilience: A Multi-Criteria Analysis of Seismic Vulnerability in Iasi City (Romania). Sustainability. 9 (2), 270. https://doi.org/10.3390/su9020270
- 32. Kermanshah, A, & Derrible, S. (2016). A geographical and multi-criteria vulnerability assessment of transportation networks against extreme earthquakes. Reliability Engineering & System Safety, 153, 39-49. https://doi.org/10.1016/j.ress.2016.04.007
- 33. Shadmaan, S. Md., & Samsunnahar, P. (20239. An assessment of earthquake vulnerability by multi-criteria decision-making method. Geohazard Mechanics, 1(1), 94-102. https://doi.org/10.1016/j.ghm.2022.11.002
- 34. Yariyan, P., Zabihi, H., Wolf, I.D., Karami, M., & Amiriyan, S. (2020). Earthquake risk assessment using an integrated Fuzzy Analytic Hierarchy Process with Artificial Neural Networks based on GIS: A case study of Sanandaj in Iran. International Journal of Disaster Risk Reduction, 50, 101705. https://doi.org/10.1016/j.ijdrr.2020.101705
- 35. Ocak, F., & Bahadır, M. (2022). Analytical Hierarchy Process for earthquake susceptibility analysis using GIS techniques: A case study Basin of Lake Ladik in Samsun, Turkey. The Journal of Kesit Academy, 33, 322-348. DOI: 10.29228/kesit.64705
- 36. Turoğlu, H. (2004). Zemin sıvılaşmasının 17 Ağustos 1999 depreminde Adapazarı’ndaki hasara etkisi. İstanbul Üniversitesi Edebiyat Fakültesi Coğrafya Bölümü Coğrafya Dergisi, 12, 63-74. Retrieved from https://dergipark.org.tr/tr/download/article-file/231194
- 37. Sönmez, M. E. (2011). An analysis of the earthquake damage risk based on Geographic Information System (GIS)as example: Zeytinburnu (Istanbul). Turkish Geographical Review, 56, 11-22. Retrieved from https://dergipark.org.tr/tr/pub/tcd/issue/21225/227787
- 38. Özşahin, E. (2014). Coğrafi Bilgi Sistemleri (CBS) ve Analitik Hiyerarşi Süreci (AHS) kullanılarak Tekirdağ ilinde deprem hasar riski analizi. International Journal of Human Sciences, 11(1), 861-879. http://dx.doi.org/10.14687/ijhs.v11i1.2816
- 39. Palchaudhuri, M., & Biswas, S. (2016). Application of AHP with GIS in drought risk assessment for Puruliya district, India, Natural Hazards. 84. 1905–1920. https://doi.org/10.1007/s11069-016-2526-3
- 40. Ocak, F. (2023). Ladik Gölü Havzası’nda (Samsun) akıllı doğal afet yönetimi. Unpublished Doctoral Thesis. Ondokuz Mayıs University Graduate Education Institute, Department of Geography, 808247, Samsun.
- 41.Saaty, T. L. (1989). Hierarchical-Multiobjective systems. Control-Theory and Advanced Technology, 5(4). 485-489.
- 42. Intarawichian, N., & Dasananda, S. (2010). Analytical hierarchy process for landslide susceptibility mapping in lower Mae Chaem Watershed, Northern Thailand. Suranaree Journal of Science & Technology. 17 (3). 1-16. https://www.thaiscience.info/journals/
- 43. Cai, Z., Zhong, S., Jiang, W., & Lei, M. (2011). A schema of ecological environment sensitivity evaluation based on GIS, International Conference on Multimedia Technology, Hangzhou, China, 2011, 5250-5255. https://doi.org/10.1109/ICMT.2011.6002704
- 44. Goepel, K. D. (2013). Implementing the analytic hierarchy process as a standard method for multi-criteria decision making in corporate enterprises-A new AHP excel template with multiple inputs. Proceedings of the International Symposium on the Analytic Hierarchy Process, Kuala Lumpur, 2013. https://doi.org/10.13033/isahp.y2013.047
- 45. Fentahun, T. M., Bagyaraj, M., Melesse, M. A., Korme, T. (2021). Seismic hazard sensitivity assessment in the Ethiopian Rift, using an integrated approach of AHP and DInSAR methods. The Egyptian Journal of Remote Sensing and Space Sciences, 24(3), Part 2, 735-744. https://doi.org/10.1016/j.ejrs.2021.05.001
- 46. Malakar, S., Rai, A. K. (2023). Estimating seismic vulnerability in West Bengal by AHP-WSM and AHP-VIKOR. Natural Hazards Research, 3(3), 464,473. https://doi.org/10.1016/j.nhres.2023.06.001
- 47. Bhadran, A., Duarah, B. P, Girishbai, D., Achu, A. L., Lahon, S., Jesiya, N. P., Vijesh, V. K., Gopinat, G. (2024). Multi-model seismic susceptibility assessment of the 1950 great Assam earthquake in the Eastern Himalayan front. Geosystems and Geoenvironment, 3(3), 100270. https://doi.org/10.1016/j.geogeo.2024.100270
- 48. Erinç, S. (2000). Jeomorfoloji-I. Der Yayınları.
- 49. Nichols, D. R., & Buchanan-Banks, J. M. (1974). Seismic hazards and land-use planning. U.S. Geology Survey, Circular 690. https://doi.org/10.3133/cir690
- 50. Vallejo, L. E., & Shettima, M. (1996). Fault movement and its impact on ground defor-mations and engineering structures. Engineering Geology, 43(2-3), 119-133. https://doi.org/10.1016/0013-7952(96)00055-5
- 51. Bayrak, E., 2019. Estimation of the peak ground acceleration for Eastern Turkey. European Journal of Science and Technology, (17), 676-681. https://doi.org/10.31590/ejosat.637938
- 52. Nath, S. K., & Thingbaijam, K. K. S. (2009). Seismic hazard assessment-a holistic micro-zonation approach. Nat. Hazards Earth Syst. Sci., 9(4), p. 1445-1459. https://doi.org/10.5194/nhess-9-1445-2009
- 53. Karadaş, A., & Öner, E. (2021). 30 Ekim 2020 Effects of the alluvial geomorphology on the damage of the Sisam Earthquake in the Bornova Plain. Journal of Geography, 42, 139-153. https://doi.org/10.26650/JGEOG2021-872890
- 54. Alpaslan, N. (2013). Soil liquefaction and mechanism. Batman University Journal of Life Sciences, 3(2), 67-89. Retrieved from https://dergipark.org.tr/tr/pub/buyasambid/issue/29820/320770