Detection of irrigated crops using Landsat 8 images: A methodology based on fieldwork and spectral reflectance analysis
Year 2025,
Volume: 10 Issue: 1, 1 - 13
Abdelaziz El-bouhalı
,
Mhamed Amyay
,
Khadija El Ouazanı Ech-chahdı
Abstract
The mapping and quantification of agricultural surfaces using remote sensing (RS) data at different scales and environmental conditions have become essential to ensure the implementation of a sustainable water resource management policy. On a global scale, the steady increase in publications over the last decades reflects the significance of optical satellite images in studying land use (LU). In the present study, we suggest a methodology to identify the most suitable dates and spectral bands for mapping irrigated crops in the Guigou depression. The methodology relies primarily on fieldwork and spectral reflectance (SR) analysis. The extraction of irrigated crops is carried out using the Support Vector Machine (SVM) classification algorithm. The integration of SR data and fieldwork has indicated that August is the most favorable month for studying irrigated crops. Thus, it was concluded that the Near Infrared band is the most effective for discriminating agricultural surfaces. Results from processing Landsat 8 satellite images (L8SI) reveal that classification accuracy varies depending on land use (LU) classes. The mapping of major LU classes indicates a high level of agreement between the classified image and ground truth, with an accuracy of 0.97 (97%). The crop types classification (irrigated crops) shows low accuracy for potatoes and carrots, with an F1 Score, User's Accuracy, and a Producer's Accuracy below 0.8. Based on the classification accuracy level, we observed that the combination of SR, fieldwork, and legend selection criteria has a high potential for distinguishing irrigated crops from other LU classes. The approach developed in this work has highlighted the importance of Landsat OLI images in mapping and quantifying agricultural surfaces in the GD. This approach could be valuable in other regions to select periods favorable to the study of irrigated crops
References
- Alexandridis, T. K., Zalidis, G. C., & Silleos, N. G. (2008). Mapping irrigated area in Mediterranean basins using low cost satellite Earth Observation. Computers and Electronics in Agriculture, 64, 93–103. https://doi.org/10.1016/j. compag.2008.04.001
- Xie, Y., & Lark, T. J. (2021). Mapping annual irrigation from Landsat imagery and environmental variables across the conterminous United States. Remote Sensing of Environment, 260, 112445. https://doi.org/10.1016/j.rse.2021.112445
- Ouzemou, J. E., El-Harti, A., Lhissou, R., El-Moujahid, A., Bouch, N., El-Ouazzani, R., Bachaoui, E., & El Ghmari, A. (2018). Crop type mapping from pansharpened Landsat 8 NDVI data: A case of a highly fragmented and intensive agricultural system. Remote Sensing Applications: Society and Environment, 11, 94–103. doi: https://doi.org/10.1016/j.rsase.2018.05.002
- Shema, R. A., & Lanhai, L. (2024). A geo-spatial analysis of precipitation distribution and its impacts on vegetation in Rwanda. Advanced GIS, 4(1), 24–30. https://publish.mersin.edu.tr/index.php/agis/article/view/1362
- Guliyev, İsmail., & Hüseynov, R. (2024). Comparative character and monitoring of some parameters of the soil and vegetation by remote sensing in the zone of Zangilan. Advanced Remote Sensing, 4(1), 28–35. https://publish.mersin.edu.tr/index.php/arsej/article/view/1079
- Xu, L., Herold, M., Tsendbazar, N. E., Masiliunas, D., Li, L., Lesiv, M., Fritz, S., & Verbesselt, J. (2022). Time series analysis for global land cover change monitoring: A comparison across sensors. Remote Sensing of Environment, 271. 112905. https://doi.org/10.1016/j.rse.2022.112905
- Mountrakis, G., Im, J., & Ogole, C. (2011). Support vector machines in remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 66, 247–259. https://doi.org/10.1016/j.isprsjprs.2010.11.001
- Htitiou, A., Boudhar, A., Lebrini, Y., Hadria, R., Lionboui, H., Elmansouri, L., Tychon, B., & Benabdelouahab, T. (2019). The Performance of Random Forest Classification Based on Phenological Metrics Derived from Sentinel-2 and Landsat 8 to Map Crop Cover in an Irrigated Semi-arid Region. Remote Sens Earth Syst. Sci., 2, 208–224. https://doi.org/10.1007/s41976-019-00023-9
- Ahmadi, K., Kalantar, B., Saeidi, V., Harandi, E. K. G., Janizadeh, S., & Ueda, N. (2020). Comparison of machine learning methods for mapping the stand characteristics of temperate forests using multi-spectral sentinel-2 data. Remote Sensing, 12, 3019. doi: https://doi.org/10.3390/rs12183019
- Pervez, Md. S., Budde, M., & James Rowland, J. (2014). Mapping irrigated areas in Afghanistan over the past decade using MODIS NDVI. Remote Sensing of Environment, 149, 155–165. https://doi.org/10.1016/j.rse.2014.04.008
- Şenol, H. İ., Kaya, Y., Yiğit, A. Y., & Yakar, M. (2024). Extraction and geospatial analysis of the Hersek Lagoon shoreline with Sentinel-2 satellite data. Survey Review, 56(397), 367-382.
- Zheng, B., Myint, S. W., Thenkabail, P. S., & Aggarwal, R. M. (2015). A support vector machine to identify irrigated crop types using time-series Landsat NDVI data. International Journal of Applied Earth Observation and Geoinformation, 34, 103–112. https://doi.org/10.1016/j.jag.2014.07.002
- Rhyma, P. P., Norizah, K., Hamdan, O., Faridah-Hanum, I., & Zulfa, A. W. (2020). Integration of normalised different vegetation index and Soil Adjusted Vegetation Index for mangrove vegetation delineation. Remote Sensing Applications. Society and Environment, 17, 100280. https://doi.org/10.1016/j.rsase.2019.100280
- Eid, A. N. M., Olatubara, C. O., Ewemoje, T. A., Talaat El-Hennawy, M., & Farouk, H. (2020). Inland wetland time-series digital change detection based on SAVI and NDWI indecies: Wadi El-Rayan lakes, Egypt. Remote Sensing Applications: Society and Environment, 19, 100347. https://doi.org/10.1016/j.rsase.2020.100347
- Dijk, D. V., Shoaie, S., Leeuwen, T. V., & Veraverbeke, S. (2021). Spectral signature analysis of false positive burned area detection from agricultural harvests using Sentinel-2 data. International Journal of Applied Earth Observations and Geoinformation, 97, 102296. https://doi.org/10.1016/j.jag.2021.102296
- Azevedo, R. P., Dallacort, R., Boechat, G. L., Teodoro, P. E., Teodoro, L. P. R., & et al. (2023). Remotely sensed imagery and machine learning for mapping of sesame crop in the Brazilian Midwest. Remote Sensing Applications: Society and Environment, 32, 101018. https://doi.org/10.1016/j.rsase.2023.101018
- Vogels, M. F. A., de Jong, S. M., Sterk, G., & Addink, E. A. (2019). Mapping irrigated agriculture in complex landscapes using SPOT6 imagery and object-based image analysis – A case study in the Central Rift Valley, Ethiopia. International Journal of Applied Earth Observation and Geoinformation, 75, 118–129. https://doi.org/10.1016/j.jag.2018.07.019
- Mao, D., Wang, Z., Du, B., Li, L., Tian, Y., Jia, M., Zeng, Y., Song, K., Jiang, M., & Wang, Y. (2020). National wetland mapping in China: A new product resulting from object based and hierarchical classification of Landsat 8 OLI images. ISPRS Journal of Photogrammetry and Remote Sensing, 164, 11–25. https://doi.org/10.1016/j.jag.2014.01.020
- Maselli, F., Battista, P., Chiesi, M., Rapi, B., Angeli, L., Fibbi, L., Magno, R., & Gozzini, B. (2020). Use of Sentinel-2 MSI data to monitor crop irrigation in Mediterranean areas. International Journal of Applied Earth Observation and Geoinformation, 93, 102216. https://doi.org/10.1016/j.jag.2020.102216
- Siraj, M., Mahmood, S., & Habib, W. (2023). Geo-spatial assessment of land cover change in District Dera Ismail Khan, Khyber Pakhtunkhwa, Pakistan. Advanced Remote Sensing, 3(1), 1–9. https://publish.mersin.edu.tr/index.php/arsej/article/view/686
- Benbahrıa, Z., Sebari, I., Hajji, H., Smiej, M. F. (2021). Intelligent mapping of irrigated areas from Landsat 8 images using transfer learning. International Journal of Engineering and Geosciences, 6(1), 40-50. https://doi.org/10.26833/ijeg.681312
- Zurqani, H. A., Allen, J. S., Post, C. J., Pellett, C. A., & Walker, T. C. (2021). Mapping and quantifying agricultural irrigation in heterogeneous landscapes using Google Earth Engine. Remote Sensing Applications: Society and Environment, 23, 100590. https://doi.org/10.1016/j.rsase.2021.100590
- Gull, A., & Mahmood, S. (2022). Spatio-temporal analysis and trend prediction of land cover changes using markov chain model in Islamabad, Pakistan. Advanced GIS, 2(2), 52–61. https://publish.mersin.edu.tr/index.php/agis/article/view/679
- Shafiq, M., & Mahmood, S. (2022). Spatial assessment of forest cover change in Azad Kashmir, Pakistan. Advanced GIS, 2(2), 62–69. https://publish.mersin.edu.tr/index.php/agis/article/view/689
- Ozdogan, M., Yang, Y., Allez, G., & Cervantes, C. (2010). Remote Sensing of Irrigated Agriculture: Opportunities and Challenges. Remote Sensing, 2, 2274–2304. https://doi.org/10.3390/rs2092274
- Marino, S. (2023). Understanding the spatio-temporal behavior of crop yield, yield components and weed pressure using time series Sentinel-2-data in an organic farming system. European Journal of Agronomy, 145, 126785. https://doi.org/10.1016/j.eja.2023.126785
- Bian, J., Lia, A., Leia, G., Zhanga, Z., & Nana, X. (2020). Global high-resolution mountain green cover index mapping based on Landsat images and Google Earth Engine. ISPRS Journal of Photogrammetry and Remote Sensing, 162, 63–76. https://doi.org/10.1016/j.isprsjprs.2020.02.011
- Dutrieux, L. P., Jakovac, C. C., Latifah, S. H., & Kooistra. L. (2016). Reconstructing land use history from Landsat time-series Case study of a swidden agriculture system in Brazil. International Journal of Applied Earth Observation and Geoinformation, 47, 112–124. http://dx.doi.org/10.1016/j.jag.2015.11.018
- Belgiu, M., & Csillik, O. (2018). Sentinel-2 cropland mapping using pixel-based and object-based timeweighted dynamic time warping analysis. Remote Sensing of Environment, 204, 509–523. http://dx.doi.org/10.1016/j.rse.2017.10.005
- Czekajlo, A., Coops, N. C., Wulder, M. A., Hermosilla, T., White, J. C., & Van Den Bosch, M. (2021). Mapping dynamic peri-urban land use transitions across Canada using Landsat time series: Spatial and temporal trends and associations with socio-demographic factors. Computers, Environment and Urban Systems, 88, 101653. https://doi.org/10.1016/j.compenvurbsys.2021.101653
- Delgado-Artés, R., Garófano-Gómez, V., Oliver-Villanueva, J. V., & Rojas-Briales, E. (2022). Land use/cover change analysis in the Mediterranean region: a regional case study of forest evolution in Castelló (Spain) over 50 years. Land Use Policy, 114, 105967. https://doi.org/10.1016/j.landusepol.2021.105967
- GCOS. (2016). The global observing system for climate: implementation needs. Global Climate Observing System implementation plan.
- Lemmen, C. (2009). World distribution of land cover changes during Pre- and Protohistoric Times and estimation of induced carbon releases. Géomorphologie : relief, processus, environnement, 15(4), 303-312. https://doi.org/10.4000/geomorphologie.7756
- Morrison, K. D., Hammer, E., Boles, O., Madella, M., Whitehouse, N., Gaillard, M. J., & et al. (2021). Mapping past human land use using archaeological data: A new classification for global land use synthesis and data harmonization. PLoS ONE, 16(4), e0246662. https://doi.org/10.1371/journal.,pone.0246662
- Schaldach, R., Koch, J., der Beek, T. A., Kynast, E., & Flörke, M. (2012). Current and future irrigation water requirements in pan-Europe: An integrated analysis of socio-economic and climate scenarios. Global and Planetary Change, 94–95, 33–45. doi:10.1016/j.gloplacha.2012.06.004
- Pageot, Y., Baup, F., Inglada, J., Baghdadi, N., & Demarez, V. (2020). Detection of irrigated and rainfed crops in temperate areas using sentinel-1 and sentinel-2 time series. Remote Sensing, 12, 3044. doi :http://dx.doi.org/10.3390/rs12183044
- Zeryouhi, I. (1977). Le Moyen Atlas Plisse, In Ressources en Eau du Maroc Tome 3 Domaines atlasique et sud atlasique. Ed. Service géologique du Maroc, Rabat, 66-84.
- Akdim, B., Sabaoui, A., Amyay, A., Laaouane, M., Gille, E., & Obda, Kh. (2011). Influences hydro karstiques du système sourcier Aïn Sebou-Timedrine-Ouamender sur l’hydrologie de l’oued Sebou (Moyen Atlas, Maroc). Zeitschrift für Geomorphologie, 56(2), 165-181. doi: 10.1127/0372-8854/2011/0063
- Yakar, M., & Dogan, Y. (2019). 3D Reconstruction of Residential Areas with SfM Photogrammetry. In Advances in Remote Sensing and Geo Informatics Applications: Proceedings of the 1st Springer Conference of the Arabian Journal of Geosciences (CAJG-1), Tunisia 2018 (pp. 73-75). Springer International Publishing
- Amyay, M., Laaouane, M., & Akdim, B. (2000). La pression anthropique sur les ressources en eau souterraine dans le Moyen Atlas. Exemple de la dépression d’Afourgagh. Mosella, 3-4, 341-351.
- Loubignac, V. (1938). Le régime des eaux, le nantissement et la prescription chez les Ait Youssi du Guigou. Hesperis, XXV, 251-264.
- El-Bouhali, A. (2023). L’évolution des surfaces irriguées et leur impact sur les ressources en eau dans le contexte climatique actuel au Moyen Atlas tabulaire. [Thèse de doctorat, Université Sidi Mohamed Ben Abdellah – Fès].
- El-Bouhali, A., Amyay, M., & El Ouazani Ech-Chahdi, K. (2024). Combined impact of drought and land use changes on water resources in the Tabular Middle Atlas, Morocco. Revista de Estudios Andaluces (48), 202-220. https://dx.doi.org/10.12795/rea.2024.i48.10
- El-Bouhali, A., Amyay, M., & El Ouazani Ech-Chahdi, K. (2024). Recent variations of water area in the Tabular Middle Atlas lakes, Morocco. IOP Conf. Series: Earth and Environmental Science, 1398, 012012. https://doi.org/10.1088/1755-1315/1398/1/012012
- El Jazouli, A., Barakat, A., Khellouk, R., Rais, J., & El Baghdadi, M. (2019). Remote sensing and GIS techniques for prediction of land use land cover change effects on soil erosion in the high basin of the Oum Er Rbia River (Morocco). Remote Sensing Applications: Society and Environment, 13, 361–374. https://doi.org/10.1016/j.rsase.2018.12.004
- Bayo, B., Habib, W., & Mahmood, S. (2022). Spatio-temporal assessment of mangrove cover in the Gambia using combined mangrove recognition index. Advanced Remote Sensing, 2(2), 74–84. https://publish.mersin.edu.tr/index.php/arsej/article/view/685
- Baghdadi, N., & Zribi, M. (2017). Observation des surfaces continentales par télédétection optique techniques et méthodes. Edition, ISTE Ltd 1.
- Correia, R., Duarte, L., Teodoro, A. C., & Monteiro, A. (2018). Processing Image to Geographical Information Systems (PI2GIS)-A Learning Tool for QGIS. Educ. Sci., 8, 83. doi:10.3390/educsci8020083
- Obodai, J., Adjei, K. A., Odai, S. N., & Lumor, M. (2019). Land use/land cover dynamics using landsat data in a gold mining basin-the Ankobra, Ghana. Remote Sensing Applications: Society and Environment, 13, 247–256. https://doi.org/10.1016/j.rsase.2018.10.007
- Yılmaz, H. M., Yakar, M., Mutluoğlu, O., & Yıldız, F. (2004). Selection of the most suitable sizes of ground control points in the satellite images. International Society for Photogrammetry and Remote Sensing.
- Congedo, L. (2021). Semi-Automatic Classification Plugin: A Python tool for the download and processing of remote sensing images in QGIS. Journal of Open Source Software, 6(64), 3172. https://doi.org/10.21105/joss.03172
- Abdul Azeez, S., Gnanappazham, L., Muraleedharan, K. R., Revichandran, C., John, S., Seena, G., & Jubin Thomas, T. (2022). Multi-decadal changes of mangrove forest and its response to the tidal dynamics of thane creek, Mumbai. Journal of Sea Research, 180, 102162. https://doi.org/10.1016/j.seares.2021.102162
- López-Serrano, P. M., Corral-Rivas, J. J., Díaz-Varela, R. A., Álvarez-González, J. G., & López-Sánchez, C. A. (2016). Evaluation of Radiometric and Atmospheric Correction Algorithms for Aboveground Forest Biomass Estimation Using Landsat 5 TM Data. Remote Sensing, 8(5), 369. https://doi.org/10.3390/rs8050369
- Rana, V. K., & Venkata-Suryanarayana, T. M. (2020). Performance evaluation of MLE, RF and SVM classifcation algorithms for watershed scale land use/land cover mapping using sentinel 2 bands. Remote Sensing Applications: Society and Environment, 19, 100351. doi:https: //doi.org/10.1016/j.rsase.2020.100351
- Avci, C., Budak, M., Yağmur, N., & Balçik, F. B. (2023). Comparison between random forest and support vector machine algorithms for LULC classification. International Journal of Engineering and Geosciences, 8(1), 1-10. https://doi.org/10.26833/ijeg.987605
- El-Bouhali, A., Amyay, M., & El Ouazani Ech-Chahdi, K. (2024). Changes in water surface area of the Middle Atlas-Morocco lakes: A response to climate and human effects. International Journal of Engineering and Geosciences, 9(2), 221-232. https://doi.org/10.26833/ijeg.1391957
- Ghassemi, B., Dujakovic, A., Żółtak, M., Immitzer, M., Atzberger, C., & Vuolo, F. (2022). Designing a European-Wide Crop Type Mapping Approach Based on Machine Learning Algorithms Using LUCAS Field Survey and Sentinel-2 Data. Remote Sensing, 14, 541. https://doi.org/10.3390/rs14030541
- Abd El-Hamid, H.T., Alshehri, F., El-Zeiny, A.M., & Nour-Eldin, H. (2023). Remote sensing and statistical analyses for exploration and prediction of soil salinity in a vulnerable area to seawater intrusion. Marine Pollution Bulletin, 187, 114555. https://doi.org/10.1016/j.marpolbul.2022.114555
- Prajapati, G. L., & Patle, A. (2010). On Performing Classification Using SVM with Radial Basis and Polynomial Kernel Functions. 3rd International Conference on Emerging Trends in Engineering and Technology, Goa, India, 512-515. https://doi.org/10.1109/icetet.2010.134
- Wainer, J., & Fonseca, P. (2021). How to tune the RBF SVM hyperparameters? An empirical evaluation of 18 search algorithms. Artificial Intelligence Review, 54, 4771–4797. https://doi.org/10.1007/s10462-021-10011-5
- Potić, l, Srdić, Z.; Vakanjac, B., Bakrač, S., Đorđević, D., Banković, R., & Jovanović, J.M. (2023). Improving Forest Detection Using Machine Learning and Remote Sensing: A Case Study in Southeastern Serbia. Applied Sciences, 13, 8289. https://doi.org/10.3390/app13148289
- Fang, P., Zhang, X., Wei, P., Wang, Y., Zhang, H., Liu, F., & Zhao, J. (2020). The Classification Performance and Mechanism of Machine Learning Algorithms in Winter Wheat Mapping Using Sentinel-2 10 m Resolution Imagery. Applied Sciences, 10(5), 5075. https://doi.org/10.3390/app10155075
- Alonso-Sarría, F., Valdivieso-Ros, C., & Gomariz-Castillo, F. (2024). Analysis of the hyperparameter optimisation of four machine learning satellite imagery classification methods. Computational Geosciences 28, 551–571. https://doi.org/10.1007/s10596-024-10285-y
- Hashim, F., Dibs, H., & Jaber, H.S. (2021). Applying Support Vector Machine Algorithm on Multispectral Remotely sensed satellite image for Geospatial Analysis. Journal of Physics: Conference Series, 1963, 012110. https://doi.org/10.1088/1742-6596/1963/1/012110
- Meer, M. S., & Mishra, A. K. (2020). Remote sensing application for exploring changes in land use and land cover over a district in Northern India. Journal of the Indian Society of Remote Sensing, 48, 525-534. https://doi.org/10.1007/s12524-019-01095-2
- Amani, M., Salehi, B., Mahdavi, S., & Brisco, B. (2018). Spectral analysis of wetlands using multi-source optical satellite imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 144, 119–136. https://doi.org/10.1016/j.isprsjprs.2018.07.005
- El-Hendawy, S. E., Al-Suhaibani, N. A., Hassan, W. M., Dewir, Y. H., Elsayed, S., Al Ashkar, I., Abdella, K. A., & Schmidhalter, U. (2019). Evaluation of wavelengths and spectral reflectance indices for high-throughput assessment of growth, water relations and ion contents of wheat irrigated with saline water. Agricultural Water Management, 212, 358–377. https://doi.org/10.1016/j.agwat.2018.09.009
- Wang, M., Zheng, Y., Huang, C., Meng, R., Pang, Y., & et al. (2022). Assessing Landsat-8 and Sentinel-2 spectral-temporal features for mapping tree species of northern plantation forests in Heilongjiang Province, China. Forest Ecosystems, 9, 100032. https://doi.org/10.1016/j.fecs.2022.100032
Year 2025,
Volume: 10 Issue: 1, 1 - 13
Abdelaziz El-bouhalı
,
Mhamed Amyay
,
Khadija El Ouazanı Ech-chahdı
References
- Alexandridis, T. K., Zalidis, G. C., & Silleos, N. G. (2008). Mapping irrigated area in Mediterranean basins using low cost satellite Earth Observation. Computers and Electronics in Agriculture, 64, 93–103. https://doi.org/10.1016/j. compag.2008.04.001
- Xie, Y., & Lark, T. J. (2021). Mapping annual irrigation from Landsat imagery and environmental variables across the conterminous United States. Remote Sensing of Environment, 260, 112445. https://doi.org/10.1016/j.rse.2021.112445
- Ouzemou, J. E., El-Harti, A., Lhissou, R., El-Moujahid, A., Bouch, N., El-Ouazzani, R., Bachaoui, E., & El Ghmari, A. (2018). Crop type mapping from pansharpened Landsat 8 NDVI data: A case of a highly fragmented and intensive agricultural system. Remote Sensing Applications: Society and Environment, 11, 94–103. doi: https://doi.org/10.1016/j.rsase.2018.05.002
- Shema, R. A., & Lanhai, L. (2024). A geo-spatial analysis of precipitation distribution and its impacts on vegetation in Rwanda. Advanced GIS, 4(1), 24–30. https://publish.mersin.edu.tr/index.php/agis/article/view/1362
- Guliyev, İsmail., & Hüseynov, R. (2024). Comparative character and monitoring of some parameters of the soil and vegetation by remote sensing in the zone of Zangilan. Advanced Remote Sensing, 4(1), 28–35. https://publish.mersin.edu.tr/index.php/arsej/article/view/1079
- Xu, L., Herold, M., Tsendbazar, N. E., Masiliunas, D., Li, L., Lesiv, M., Fritz, S., & Verbesselt, J. (2022). Time series analysis for global land cover change monitoring: A comparison across sensors. Remote Sensing of Environment, 271. 112905. https://doi.org/10.1016/j.rse.2022.112905
- Mountrakis, G., Im, J., & Ogole, C. (2011). Support vector machines in remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 66, 247–259. https://doi.org/10.1016/j.isprsjprs.2010.11.001
- Htitiou, A., Boudhar, A., Lebrini, Y., Hadria, R., Lionboui, H., Elmansouri, L., Tychon, B., & Benabdelouahab, T. (2019). The Performance of Random Forest Classification Based on Phenological Metrics Derived from Sentinel-2 and Landsat 8 to Map Crop Cover in an Irrigated Semi-arid Region. Remote Sens Earth Syst. Sci., 2, 208–224. https://doi.org/10.1007/s41976-019-00023-9
- Ahmadi, K., Kalantar, B., Saeidi, V., Harandi, E. K. G., Janizadeh, S., & Ueda, N. (2020). Comparison of machine learning methods for mapping the stand characteristics of temperate forests using multi-spectral sentinel-2 data. Remote Sensing, 12, 3019. doi: https://doi.org/10.3390/rs12183019
- Pervez, Md. S., Budde, M., & James Rowland, J. (2014). Mapping irrigated areas in Afghanistan over the past decade using MODIS NDVI. Remote Sensing of Environment, 149, 155–165. https://doi.org/10.1016/j.rse.2014.04.008
- Şenol, H. İ., Kaya, Y., Yiğit, A. Y., & Yakar, M. (2024). Extraction and geospatial analysis of the Hersek Lagoon shoreline with Sentinel-2 satellite data. Survey Review, 56(397), 367-382.
- Zheng, B., Myint, S. W., Thenkabail, P. S., & Aggarwal, R. M. (2015). A support vector machine to identify irrigated crop types using time-series Landsat NDVI data. International Journal of Applied Earth Observation and Geoinformation, 34, 103–112. https://doi.org/10.1016/j.jag.2014.07.002
- Rhyma, P. P., Norizah, K., Hamdan, O., Faridah-Hanum, I., & Zulfa, A. W. (2020). Integration of normalised different vegetation index and Soil Adjusted Vegetation Index for mangrove vegetation delineation. Remote Sensing Applications. Society and Environment, 17, 100280. https://doi.org/10.1016/j.rsase.2019.100280
- Eid, A. N. M., Olatubara, C. O., Ewemoje, T. A., Talaat El-Hennawy, M., & Farouk, H. (2020). Inland wetland time-series digital change detection based on SAVI and NDWI indecies: Wadi El-Rayan lakes, Egypt. Remote Sensing Applications: Society and Environment, 19, 100347. https://doi.org/10.1016/j.rsase.2020.100347
- Dijk, D. V., Shoaie, S., Leeuwen, T. V., & Veraverbeke, S. (2021). Spectral signature analysis of false positive burned area detection from agricultural harvests using Sentinel-2 data. International Journal of Applied Earth Observations and Geoinformation, 97, 102296. https://doi.org/10.1016/j.jag.2021.102296
- Azevedo, R. P., Dallacort, R., Boechat, G. L., Teodoro, P. E., Teodoro, L. P. R., & et al. (2023). Remotely sensed imagery and machine learning for mapping of sesame crop in the Brazilian Midwest. Remote Sensing Applications: Society and Environment, 32, 101018. https://doi.org/10.1016/j.rsase.2023.101018
- Vogels, M. F. A., de Jong, S. M., Sterk, G., & Addink, E. A. (2019). Mapping irrigated agriculture in complex landscapes using SPOT6 imagery and object-based image analysis – A case study in the Central Rift Valley, Ethiopia. International Journal of Applied Earth Observation and Geoinformation, 75, 118–129. https://doi.org/10.1016/j.jag.2018.07.019
- Mao, D., Wang, Z., Du, B., Li, L., Tian, Y., Jia, M., Zeng, Y., Song, K., Jiang, M., & Wang, Y. (2020). National wetland mapping in China: A new product resulting from object based and hierarchical classification of Landsat 8 OLI images. ISPRS Journal of Photogrammetry and Remote Sensing, 164, 11–25. https://doi.org/10.1016/j.jag.2014.01.020
- Maselli, F., Battista, P., Chiesi, M., Rapi, B., Angeli, L., Fibbi, L., Magno, R., & Gozzini, B. (2020). Use of Sentinel-2 MSI data to monitor crop irrigation in Mediterranean areas. International Journal of Applied Earth Observation and Geoinformation, 93, 102216. https://doi.org/10.1016/j.jag.2020.102216
- Siraj, M., Mahmood, S., & Habib, W. (2023). Geo-spatial assessment of land cover change in District Dera Ismail Khan, Khyber Pakhtunkhwa, Pakistan. Advanced Remote Sensing, 3(1), 1–9. https://publish.mersin.edu.tr/index.php/arsej/article/view/686
- Benbahrıa, Z., Sebari, I., Hajji, H., Smiej, M. F. (2021). Intelligent mapping of irrigated areas from Landsat 8 images using transfer learning. International Journal of Engineering and Geosciences, 6(1), 40-50. https://doi.org/10.26833/ijeg.681312
- Zurqani, H. A., Allen, J. S., Post, C. J., Pellett, C. A., & Walker, T. C. (2021). Mapping and quantifying agricultural irrigation in heterogeneous landscapes using Google Earth Engine. Remote Sensing Applications: Society and Environment, 23, 100590. https://doi.org/10.1016/j.rsase.2021.100590
- Gull, A., & Mahmood, S. (2022). Spatio-temporal analysis and trend prediction of land cover changes using markov chain model in Islamabad, Pakistan. Advanced GIS, 2(2), 52–61. https://publish.mersin.edu.tr/index.php/agis/article/view/679
- Shafiq, M., & Mahmood, S. (2022). Spatial assessment of forest cover change in Azad Kashmir, Pakistan. Advanced GIS, 2(2), 62–69. https://publish.mersin.edu.tr/index.php/agis/article/view/689
- Ozdogan, M., Yang, Y., Allez, G., & Cervantes, C. (2010). Remote Sensing of Irrigated Agriculture: Opportunities and Challenges. Remote Sensing, 2, 2274–2304. https://doi.org/10.3390/rs2092274
- Marino, S. (2023). Understanding the spatio-temporal behavior of crop yield, yield components and weed pressure using time series Sentinel-2-data in an organic farming system. European Journal of Agronomy, 145, 126785. https://doi.org/10.1016/j.eja.2023.126785
- Bian, J., Lia, A., Leia, G., Zhanga, Z., & Nana, X. (2020). Global high-resolution mountain green cover index mapping based on Landsat images and Google Earth Engine. ISPRS Journal of Photogrammetry and Remote Sensing, 162, 63–76. https://doi.org/10.1016/j.isprsjprs.2020.02.011
- Dutrieux, L. P., Jakovac, C. C., Latifah, S. H., & Kooistra. L. (2016). Reconstructing land use history from Landsat time-series Case study of a swidden agriculture system in Brazil. International Journal of Applied Earth Observation and Geoinformation, 47, 112–124. http://dx.doi.org/10.1016/j.jag.2015.11.018
- Belgiu, M., & Csillik, O. (2018). Sentinel-2 cropland mapping using pixel-based and object-based timeweighted dynamic time warping analysis. Remote Sensing of Environment, 204, 509–523. http://dx.doi.org/10.1016/j.rse.2017.10.005
- Czekajlo, A., Coops, N. C., Wulder, M. A., Hermosilla, T., White, J. C., & Van Den Bosch, M. (2021). Mapping dynamic peri-urban land use transitions across Canada using Landsat time series: Spatial and temporal trends and associations with socio-demographic factors. Computers, Environment and Urban Systems, 88, 101653. https://doi.org/10.1016/j.compenvurbsys.2021.101653
- Delgado-Artés, R., Garófano-Gómez, V., Oliver-Villanueva, J. V., & Rojas-Briales, E. (2022). Land use/cover change analysis in the Mediterranean region: a regional case study of forest evolution in Castelló (Spain) over 50 years. Land Use Policy, 114, 105967. https://doi.org/10.1016/j.landusepol.2021.105967
- GCOS. (2016). The global observing system for climate: implementation needs. Global Climate Observing System implementation plan.
- Lemmen, C. (2009). World distribution of land cover changes during Pre- and Protohistoric Times and estimation of induced carbon releases. Géomorphologie : relief, processus, environnement, 15(4), 303-312. https://doi.org/10.4000/geomorphologie.7756
- Morrison, K. D., Hammer, E., Boles, O., Madella, M., Whitehouse, N., Gaillard, M. J., & et al. (2021). Mapping past human land use using archaeological data: A new classification for global land use synthesis and data harmonization. PLoS ONE, 16(4), e0246662. https://doi.org/10.1371/journal.,pone.0246662
- Schaldach, R., Koch, J., der Beek, T. A., Kynast, E., & Flörke, M. (2012). Current and future irrigation water requirements in pan-Europe: An integrated analysis of socio-economic and climate scenarios. Global and Planetary Change, 94–95, 33–45. doi:10.1016/j.gloplacha.2012.06.004
- Pageot, Y., Baup, F., Inglada, J., Baghdadi, N., & Demarez, V. (2020). Detection of irrigated and rainfed crops in temperate areas using sentinel-1 and sentinel-2 time series. Remote Sensing, 12, 3044. doi :http://dx.doi.org/10.3390/rs12183044
- Zeryouhi, I. (1977). Le Moyen Atlas Plisse, In Ressources en Eau du Maroc Tome 3 Domaines atlasique et sud atlasique. Ed. Service géologique du Maroc, Rabat, 66-84.
- Akdim, B., Sabaoui, A., Amyay, A., Laaouane, M., Gille, E., & Obda, Kh. (2011). Influences hydro karstiques du système sourcier Aïn Sebou-Timedrine-Ouamender sur l’hydrologie de l’oued Sebou (Moyen Atlas, Maroc). Zeitschrift für Geomorphologie, 56(2), 165-181. doi: 10.1127/0372-8854/2011/0063
- Yakar, M., & Dogan, Y. (2019). 3D Reconstruction of Residential Areas with SfM Photogrammetry. In Advances in Remote Sensing and Geo Informatics Applications: Proceedings of the 1st Springer Conference of the Arabian Journal of Geosciences (CAJG-1), Tunisia 2018 (pp. 73-75). Springer International Publishing
- Amyay, M., Laaouane, M., & Akdim, B. (2000). La pression anthropique sur les ressources en eau souterraine dans le Moyen Atlas. Exemple de la dépression d’Afourgagh. Mosella, 3-4, 341-351.
- Loubignac, V. (1938). Le régime des eaux, le nantissement et la prescription chez les Ait Youssi du Guigou. Hesperis, XXV, 251-264.
- El-Bouhali, A. (2023). L’évolution des surfaces irriguées et leur impact sur les ressources en eau dans le contexte climatique actuel au Moyen Atlas tabulaire. [Thèse de doctorat, Université Sidi Mohamed Ben Abdellah – Fès].
- El-Bouhali, A., Amyay, M., & El Ouazani Ech-Chahdi, K. (2024). Combined impact of drought and land use changes on water resources in the Tabular Middle Atlas, Morocco. Revista de Estudios Andaluces (48), 202-220. https://dx.doi.org/10.12795/rea.2024.i48.10
- El-Bouhali, A., Amyay, M., & El Ouazani Ech-Chahdi, K. (2024). Recent variations of water area in the Tabular Middle Atlas lakes, Morocco. IOP Conf. Series: Earth and Environmental Science, 1398, 012012. https://doi.org/10.1088/1755-1315/1398/1/012012
- El Jazouli, A., Barakat, A., Khellouk, R., Rais, J., & El Baghdadi, M. (2019). Remote sensing and GIS techniques for prediction of land use land cover change effects on soil erosion in the high basin of the Oum Er Rbia River (Morocco). Remote Sensing Applications: Society and Environment, 13, 361–374. https://doi.org/10.1016/j.rsase.2018.12.004
- Bayo, B., Habib, W., & Mahmood, S. (2022). Spatio-temporal assessment of mangrove cover in the Gambia using combined mangrove recognition index. Advanced Remote Sensing, 2(2), 74–84. https://publish.mersin.edu.tr/index.php/arsej/article/view/685
- Baghdadi, N., & Zribi, M. (2017). Observation des surfaces continentales par télédétection optique techniques et méthodes. Edition, ISTE Ltd 1.
- Correia, R., Duarte, L., Teodoro, A. C., & Monteiro, A. (2018). Processing Image to Geographical Information Systems (PI2GIS)-A Learning Tool for QGIS. Educ. Sci., 8, 83. doi:10.3390/educsci8020083
- Obodai, J., Adjei, K. A., Odai, S. N., & Lumor, M. (2019). Land use/land cover dynamics using landsat data in a gold mining basin-the Ankobra, Ghana. Remote Sensing Applications: Society and Environment, 13, 247–256. https://doi.org/10.1016/j.rsase.2018.10.007
- Yılmaz, H. M., Yakar, M., Mutluoğlu, O., & Yıldız, F. (2004). Selection of the most suitable sizes of ground control points in the satellite images. International Society for Photogrammetry and Remote Sensing.
- Congedo, L. (2021). Semi-Automatic Classification Plugin: A Python tool for the download and processing of remote sensing images in QGIS. Journal of Open Source Software, 6(64), 3172. https://doi.org/10.21105/joss.03172
- Abdul Azeez, S., Gnanappazham, L., Muraleedharan, K. R., Revichandran, C., John, S., Seena, G., & Jubin Thomas, T. (2022). Multi-decadal changes of mangrove forest and its response to the tidal dynamics of thane creek, Mumbai. Journal of Sea Research, 180, 102162. https://doi.org/10.1016/j.seares.2021.102162
- López-Serrano, P. M., Corral-Rivas, J. J., Díaz-Varela, R. A., Álvarez-González, J. G., & López-Sánchez, C. A. (2016). Evaluation of Radiometric and Atmospheric Correction Algorithms for Aboveground Forest Biomass Estimation Using Landsat 5 TM Data. Remote Sensing, 8(5), 369. https://doi.org/10.3390/rs8050369
- Rana, V. K., & Venkata-Suryanarayana, T. M. (2020). Performance evaluation of MLE, RF and SVM classifcation algorithms for watershed scale land use/land cover mapping using sentinel 2 bands. Remote Sensing Applications: Society and Environment, 19, 100351. doi:https: //doi.org/10.1016/j.rsase.2020.100351
- Avci, C., Budak, M., Yağmur, N., & Balçik, F. B. (2023). Comparison between random forest and support vector machine algorithms for LULC classification. International Journal of Engineering and Geosciences, 8(1), 1-10. https://doi.org/10.26833/ijeg.987605
- El-Bouhali, A., Amyay, M., & El Ouazani Ech-Chahdi, K. (2024). Changes in water surface area of the Middle Atlas-Morocco lakes: A response to climate and human effects. International Journal of Engineering and Geosciences, 9(2), 221-232. https://doi.org/10.26833/ijeg.1391957
- Ghassemi, B., Dujakovic, A., Żółtak, M., Immitzer, M., Atzberger, C., & Vuolo, F. (2022). Designing a European-Wide Crop Type Mapping Approach Based on Machine Learning Algorithms Using LUCAS Field Survey and Sentinel-2 Data. Remote Sensing, 14, 541. https://doi.org/10.3390/rs14030541
- Abd El-Hamid, H.T., Alshehri, F., El-Zeiny, A.M., & Nour-Eldin, H. (2023). Remote sensing and statistical analyses for exploration and prediction of soil salinity in a vulnerable area to seawater intrusion. Marine Pollution Bulletin, 187, 114555. https://doi.org/10.1016/j.marpolbul.2022.114555
- Prajapati, G. L., & Patle, A. (2010). On Performing Classification Using SVM with Radial Basis and Polynomial Kernel Functions. 3rd International Conference on Emerging Trends in Engineering and Technology, Goa, India, 512-515. https://doi.org/10.1109/icetet.2010.134
- Wainer, J., & Fonseca, P. (2021). How to tune the RBF SVM hyperparameters? An empirical evaluation of 18 search algorithms. Artificial Intelligence Review, 54, 4771–4797. https://doi.org/10.1007/s10462-021-10011-5
- Potić, l, Srdić, Z.; Vakanjac, B., Bakrač, S., Đorđević, D., Banković, R., & Jovanović, J.M. (2023). Improving Forest Detection Using Machine Learning and Remote Sensing: A Case Study in Southeastern Serbia. Applied Sciences, 13, 8289. https://doi.org/10.3390/app13148289
- Fang, P., Zhang, X., Wei, P., Wang, Y., Zhang, H., Liu, F., & Zhao, J. (2020). The Classification Performance and Mechanism of Machine Learning Algorithms in Winter Wheat Mapping Using Sentinel-2 10 m Resolution Imagery. Applied Sciences, 10(5), 5075. https://doi.org/10.3390/app10155075
- Alonso-Sarría, F., Valdivieso-Ros, C., & Gomariz-Castillo, F. (2024). Analysis of the hyperparameter optimisation of four machine learning satellite imagery classification methods. Computational Geosciences 28, 551–571. https://doi.org/10.1007/s10596-024-10285-y
- Hashim, F., Dibs, H., & Jaber, H.S. (2021). Applying Support Vector Machine Algorithm on Multispectral Remotely sensed satellite image for Geospatial Analysis. Journal of Physics: Conference Series, 1963, 012110. https://doi.org/10.1088/1742-6596/1963/1/012110
- Meer, M. S., & Mishra, A. K. (2020). Remote sensing application for exploring changes in land use and land cover over a district in Northern India. Journal of the Indian Society of Remote Sensing, 48, 525-534. https://doi.org/10.1007/s12524-019-01095-2
- Amani, M., Salehi, B., Mahdavi, S., & Brisco, B. (2018). Spectral analysis of wetlands using multi-source optical satellite imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 144, 119–136. https://doi.org/10.1016/j.isprsjprs.2018.07.005
- El-Hendawy, S. E., Al-Suhaibani, N. A., Hassan, W. M., Dewir, Y. H., Elsayed, S., Al Ashkar, I., Abdella, K. A., & Schmidhalter, U. (2019). Evaluation of wavelengths and spectral reflectance indices for high-throughput assessment of growth, water relations and ion contents of wheat irrigated with saline water. Agricultural Water Management, 212, 358–377. https://doi.org/10.1016/j.agwat.2018.09.009
- Wang, M., Zheng, Y., Huang, C., Meng, R., Pang, Y., & et al. (2022). Assessing Landsat-8 and Sentinel-2 spectral-temporal features for mapping tree species of northern plantation forests in Heilongjiang Province, China. Forest Ecosystems, 9, 100032. https://doi.org/10.1016/j.fecs.2022.100032