Research Article
BibTex RIS Cite
Year 2025, Volume: 10 Issue: 2, 221 - 230
https://doi.org/10.26833/ijeg.1587264

Abstract

References

  • Pak, D. N. B., Kırtıloğlu, O. S., Kayalık, M., & Polat, Z. A. (2023). The transformation from e-government to e-land administration in Türkiye: A SWOT-based assessment analysis. International Journal of Engineering and Geosciences, 8(3), 290–300. https://dergipark.org.tr/tr/download/article-file/2571001
  • Mohanty, S. P., Czakon, J., Kaczmarek, K. A., Pyskir, A., Tarasiewicz, P., Kunwar, S., & Schilling, M. (2020). Deep learning for understanding satellite imagery: An experimental survey. Frontiers in Artificial Intelligence, 3, 534696. https://doi.org/10.3389/frai.2020.534696
  • Taye, M. M. (2023). Understanding of machine learning with deep learning: Architectures, workflow, applications, and future directions. Computers, 12(5), 91. https://doi.org/10.3390/computers12050091
  • Wang, L., Zhang, M., Gao, X., & Shi, W. (2024). Advances and challenges in deep learning-based change detection for remote sensing images: A review through various learning paradigms. Remote Sensing, 16(5), 804. https://doi.org/10.3390/rs16050804
  • Sisodiya, N., Dube, N., & Thakkar, P. (2020). Next-generation artificial intelligence techniques for satellite data processing. In Artificial Intelligence Techniques for Satellite Image Analysis (pp. 235–254).
  • Ma, L., Liu, Y., Lu, Y., Zhang, X., Ye, Y., Yin, G., & Alan, B. (2019). Deep learning in remote sensing applications: A meta-analysis and review. ISPRS Journal of Photogrammetry and Remote Sensing, 152, 166–177. https://doi.org/10.1016/j.isprsjprs.2019.04.015
  • Zhang, C., Jiang, W., Zhang, Y., Wang, W., Zhao, Q., & Wang, C. (2022). Transformer and CNN hybrid deep neural network for semantic segmentation of very-high-resolution remote sensing imagery. IEEE Transactions on Geoscience and Remote Sensing, 60, 1–20. https://doi.org/10.1109/TGRS.2022.3144894
  • Konopczyński, T., Heiman, R., Woźnicki, P., Gniewek, P., Duvernoy, M. C., Hallatschek, O., & Hesser, J. (2020). Instance segmentation of densely packed cells using a hybrid model of U-net and mask R-CNN. In Artificial Intelligence and Soft Computing: 19th International Conference, ICAISC 2020, Zakopane, Poland, October 12–14, 2020, Proceedings, Part I (Vol. 19). Springer International Publishing. https://doi.org/10.1007/978-3-030-61401-0_58
  • Temenos, A., Temenos, N., Doulamis, A., & Doulamis, N. (2022). On the exploration of automatic building extraction from RGB satellite images using deep learning architectures based on U-Net. Technologies, 10(1), 19. https://doi.org/10.3390/technologies10010019
  • Nguyen, T. T., Hoang, T. D., Pham, M. T., Vu, T. T., Nguyen, T. H., Huynh, Q. T., & Jo, J. (2020). Monitoring agriculture areas with satellite images and deep learning. Applied Soft Computing, 95, 106565. https://doi.org/10.1016/j.asoc.2020.106565
  • Ghildiyal, S., Goel, N., Singh, S., Lal, S., Kawsar, R., El Saddik, A., & Saini, M. (2024). SSGAN: Cloud removal in satellite images using spatiospectral generative adversarial network. European Journal of Agronomy, 161, 127333. https://doi.org/10.1016/j.eja.2024.127333
  • Molini, A. B., Valsesia, D., Fracastoro, G., & Magli, E. (2019). Deepsum: Deep neural network for super-resolution of unregistered multitemporal images. IEEE Transactions on Geoscience and Remote Sensing, 58(5), 3644–3656. https://doi.org/10.1109/TGRS.2019.2959248
  • Biyik, M., Atik, M., & Duran, Z. (2023). Deep learning-based vehicle detection from orthophoto and spatial accuracy analysis. International Journal of Engineering and Geosciences, 8(2), 138–145. Retrieved from https://dergipark.org.tr/tr/download/article-file/2281060
  • Peng, X., Zhong, R., Li, Z., & Li, Q. (2020). Optical remote sensing image change detection based on attention mechanism and image difference. IEEE Transactions on Geoscience and Remote Sensing, 59(9), 7296–7307. https://doi.org/10.1109/TGRS.2020.3033009
  • Kaya, Y., Şenol, H. İ., Yiğit, A. Y., & Yakar, M. (2023). Car detection from very high-resolution UAV images using deep learning algorithms. Photogrammetric Engineering & Remote Sensing, 89(2), 117-123
  • Li, K., Wan, G., Cheng, G., Meng, L., & Han, J. (2020). Object detection in optical remote sensing images: A survey and a new benchmark. ISPRS Journal of Photogrammetry and Remote Sensing, 159, 296–307. https://doi.org/10.1016/j.isprsjprs.2019.11.023
  • Liu, Y., Li, H., Hu, C., Luo, S., Luo, Y., & Chen, C. W. (2024). Learning to aggregate multi-scale context for instance segmentation in remote sensing images. IEEE Transactions on Neural Networks and Learning Systems. https://doi.org/10.48550/arXiv.2111.11057
  • Hoeser, T., Bachofer, F., & Kuenzer, C. (2020). Object detection and image segmentation with deep learning on Earth observation data: A review—Part II: Applications. Remote Sensing, 12(18), 3053. https://doi.org/10.3390/rs12183053
  • Tong, K., Wu, Y., & Zhou, F. (2020). Recent advances in small object detection based on deep learning: A review. Image and Vision Computing, 97, 103910. https://doi.org/10.1016/j.imavis.2020.103910
  • Wang, Y., Bashir, S. M. A., Khan, M., Ullah, Q., Wang, R., Song, Y., & Niu, Y. (2022). Remote sensing image super-resolution and object detection: Benchmark and state of the art. Expert Systems with Applications, 197, 116793. https://doi.org/10.1016/j.eswa.2022.116793
  • Bakırman, T., & Sertel, E. (2023). A benchmark dataset for deep learning-based airplane detection: HRPlanes. International Journal of Engineering and Geosciences, 8(3), 212–223. Retrieved from https://dergipark.org.tr/tr/download/article-file/2392282
  • Mahendrakar, T., Ekblad, A., Fischer, N., White, R., Wilde, M., & Kish, B. (2022, March). Performance study of YOLOv5 and Faster R-CNN for autonomous navigation around non-cooperative targets. IEEE Aerospace Conference.
  • Thapa, A., Horanont, T., Neupane, B., & Aryal, J. (2023). Deep learning for remote sensing image scene classification: A review and meta-analysis. Remote Sensing, 15(19), 4804. https://doi.org/10.3390/rs15194804
  • Cheng, G., Xie, X., Han, J., Guo, L., & Xia, G. S. (2020). Remote sensing image scene classification meets deep learning: Challenges, methods, benchmarks, and opportunities. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 3735–3756. https://doi.org/10.1109/JSTARS.2020.3005403
  • Polat, N., & Memduhoğlu, A. (2024). An unmanned aerial vehicle-based investigation of roof patch suitability for solar panel installation. International Journal of Engineering and Geosciences, 9(2), 281–291. https://dergipark.org.tr/tr/download/article-file/3678854
  • Akar, Ö., Saralioğlu, E., Güngör, O., & Bayata, H. F. (2024). Semantic segmentation of very-high spatial resolution satellite images: A comparative analysis of 3D-CNN and traditional machine learning algorithms for automatic vineyard detection. International Journal of Engineering and Geosciences, 9(1), 12–24. Retrieved from https://dergipark.org.tr/en/pub/ijeg/issue/82506/1252298
  • Qasem, R. (2023, May 14). Customize MMSegmentation models. Medium. https://medium.com/@rabee.qasem93/customize-mmsegmentation-models-870054ef803
  • Li, B. (2022, July 19). Train semantic segmentation model with custom dataset using mmsegmentation. Medium. https://bo-li.medium.com/train-semantic-segmentation-model-with-custom-dataset-using-mmsegmentation-90d798d3f1bd
  • Zhang, C., Lam, K. M., & Wang, Q. (2023). Cof-net: A progressive coarse-to-fine framework for object detection in remote-sensing imagery. IEEE Transactions on Geoscience and Remote Sensing, 61, 1–17. https://doi.org/10.1109/TGRS.2022.3233881
  • IEEE. (2021). MLCM: Multi-label confusion matrix. IEEE Journals & Magazine. https://ieeexplore.ieee.org/abstract/document/9711932
  • Vujovic, Ž. (2021). Classification model evaluation metrics. International Journal of Advanced Computer Science and Applications, 12, 599–606. https://doi.org/10.14569/IJACSA.2021.0120670
  • Unel, F. B., Kusak, L., & Yakar, M. (2023). GeoValueIndex map of public property assets generating via Analytic Hierarchy Process and Geographic Information System for Mass Appraisal: GeoValueIndex. Aestimum, 82, 51-69 .
  • Hashemi-Beni, L., & Gebrehiwot, A. (2020). Deep learning for remote sensing image classification for agriculture applications. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIV-M-2-2020, 51–54. https://doi.org/10.5194/isprs-archives-XLIV-M-2-2020-51-2020
  • Kaur, H., & Sandhu, N. K. (2024). Evaluating the effectiveness of the proposed system using F1 score, recall, accuracy, precision, and loss metrics compared to prior techniques. International Journal of Communication Networks and Information Security, 15(4), 368–383.
  • Ernst, F.B., Köksal, B., (2024). Creating Climate Change Scenarios Using Geodesing Method: Pütürge District Example. Advanced Geomatics. 4(1); 01-08.
  • Tabakoğlu, C. (2024). A Review: Detection types and systems in remote sensing. Advanced GIS, 4(2), 100–105.Retrieved from https://publish.mersin.edu.tr/index.php/agis/article/view/1560
  • Ayalke, G. Z., & Şişman, A. (2024). Google Earth Engine kullanılarak makine öğrenmesi tabanlı iyileştirilmiş arazi örtüsü sınıflandırması: Atakum, Samsun örneği. Geomatik, 9 (3), 375-390. DOI: 10.29128/geomatik.1472160
  • Makhmudov, R., & Teymurov, M. (2024). Importance of using GIS software in the process of application of Analogue terrains and Counter-approach technologies in water resources assessment. Advanced Remote Sensing, 4(1), 36-45.
  • Demirel, Y., & Türk, N. (2024). Automatic detection of active fires and burnt areas in forest areas using optical satellite imagery and deep learning methods. Mersin Photogrammetry Journal, 6 (2), 66-78. https://doi.org/10.53093/mephoj.1575877

Leveraging Deep Learning in Remote Sensing: A Novel Approach for Agricultural Greenhouse Detection and Innovation Management

Year 2025, Volume: 10 Issue: 2, 221 - 230
https://doi.org/10.26833/ijeg.1587264

Abstract

Innovation management plays a pivotal role in harnessing advanced technologies to drive progress across diverse fields. In this context, integrating deep learning models within remote sensing technologies presents transformative potential for monitoring, change detection, analysis, and decision-making in fields such as agriculture, urban planning, and environmental studies. This study examines the role of sophisticated deep learning approaches in analyzing high-resolution satellite imagery to improve the detection of agricultural greenhouses. Using MMSegmentation (DeepLabv3Plus) with multispectral data at 0.7-meter resolution, the research addresses the limitations of traditional methods by substantially enhancing detection accuracy and efficiency. To address data scarcity and increase model robustness, advanced data augmentation techniques—such as rotations, scaling, and flipping - expand dataset diversity, fostering adaptability and performance under diverse conditions. The study also assesses the impact of environmental factors, including seasonal variations and weather, on model performance. Suggested improvements include expanding the dataset to encompass a wider variety of greenhouse types and conditions, incorporating high-resolution or hyperspectral imagery for finer details, and building multi-temporal datasets to capture dynamic environmental changes. The findings underscore the importance of advanced innovation management in enhancing remote sensing applications, offering actionable insights for agricultural management in Albania and similar regions. This research contributes to the broader field of innovation management by showcasing how deep learning can revolutionize practical applications in agriculture

References

  • Pak, D. N. B., Kırtıloğlu, O. S., Kayalık, M., & Polat, Z. A. (2023). The transformation from e-government to e-land administration in Türkiye: A SWOT-based assessment analysis. International Journal of Engineering and Geosciences, 8(3), 290–300. https://dergipark.org.tr/tr/download/article-file/2571001
  • Mohanty, S. P., Czakon, J., Kaczmarek, K. A., Pyskir, A., Tarasiewicz, P., Kunwar, S., & Schilling, M. (2020). Deep learning for understanding satellite imagery: An experimental survey. Frontiers in Artificial Intelligence, 3, 534696. https://doi.org/10.3389/frai.2020.534696
  • Taye, M. M. (2023). Understanding of machine learning with deep learning: Architectures, workflow, applications, and future directions. Computers, 12(5), 91. https://doi.org/10.3390/computers12050091
  • Wang, L., Zhang, M., Gao, X., & Shi, W. (2024). Advances and challenges in deep learning-based change detection for remote sensing images: A review through various learning paradigms. Remote Sensing, 16(5), 804. https://doi.org/10.3390/rs16050804
  • Sisodiya, N., Dube, N., & Thakkar, P. (2020). Next-generation artificial intelligence techniques for satellite data processing. In Artificial Intelligence Techniques for Satellite Image Analysis (pp. 235–254).
  • Ma, L., Liu, Y., Lu, Y., Zhang, X., Ye, Y., Yin, G., & Alan, B. (2019). Deep learning in remote sensing applications: A meta-analysis and review. ISPRS Journal of Photogrammetry and Remote Sensing, 152, 166–177. https://doi.org/10.1016/j.isprsjprs.2019.04.015
  • Zhang, C., Jiang, W., Zhang, Y., Wang, W., Zhao, Q., & Wang, C. (2022). Transformer and CNN hybrid deep neural network for semantic segmentation of very-high-resolution remote sensing imagery. IEEE Transactions on Geoscience and Remote Sensing, 60, 1–20. https://doi.org/10.1109/TGRS.2022.3144894
  • Konopczyński, T., Heiman, R., Woźnicki, P., Gniewek, P., Duvernoy, M. C., Hallatschek, O., & Hesser, J. (2020). Instance segmentation of densely packed cells using a hybrid model of U-net and mask R-CNN. In Artificial Intelligence and Soft Computing: 19th International Conference, ICAISC 2020, Zakopane, Poland, October 12–14, 2020, Proceedings, Part I (Vol. 19). Springer International Publishing. https://doi.org/10.1007/978-3-030-61401-0_58
  • Temenos, A., Temenos, N., Doulamis, A., & Doulamis, N. (2022). On the exploration of automatic building extraction from RGB satellite images using deep learning architectures based on U-Net. Technologies, 10(1), 19. https://doi.org/10.3390/technologies10010019
  • Nguyen, T. T., Hoang, T. D., Pham, M. T., Vu, T. T., Nguyen, T. H., Huynh, Q. T., & Jo, J. (2020). Monitoring agriculture areas with satellite images and deep learning. Applied Soft Computing, 95, 106565. https://doi.org/10.1016/j.asoc.2020.106565
  • Ghildiyal, S., Goel, N., Singh, S., Lal, S., Kawsar, R., El Saddik, A., & Saini, M. (2024). SSGAN: Cloud removal in satellite images using spatiospectral generative adversarial network. European Journal of Agronomy, 161, 127333. https://doi.org/10.1016/j.eja.2024.127333
  • Molini, A. B., Valsesia, D., Fracastoro, G., & Magli, E. (2019). Deepsum: Deep neural network for super-resolution of unregistered multitemporal images. IEEE Transactions on Geoscience and Remote Sensing, 58(5), 3644–3656. https://doi.org/10.1109/TGRS.2019.2959248
  • Biyik, M., Atik, M., & Duran, Z. (2023). Deep learning-based vehicle detection from orthophoto and spatial accuracy analysis. International Journal of Engineering and Geosciences, 8(2), 138–145. Retrieved from https://dergipark.org.tr/tr/download/article-file/2281060
  • Peng, X., Zhong, R., Li, Z., & Li, Q. (2020). Optical remote sensing image change detection based on attention mechanism and image difference. IEEE Transactions on Geoscience and Remote Sensing, 59(9), 7296–7307. https://doi.org/10.1109/TGRS.2020.3033009
  • Kaya, Y., Şenol, H. İ., Yiğit, A. Y., & Yakar, M. (2023). Car detection from very high-resolution UAV images using deep learning algorithms. Photogrammetric Engineering & Remote Sensing, 89(2), 117-123
  • Li, K., Wan, G., Cheng, G., Meng, L., & Han, J. (2020). Object detection in optical remote sensing images: A survey and a new benchmark. ISPRS Journal of Photogrammetry and Remote Sensing, 159, 296–307. https://doi.org/10.1016/j.isprsjprs.2019.11.023
  • Liu, Y., Li, H., Hu, C., Luo, S., Luo, Y., & Chen, C. W. (2024). Learning to aggregate multi-scale context for instance segmentation in remote sensing images. IEEE Transactions on Neural Networks and Learning Systems. https://doi.org/10.48550/arXiv.2111.11057
  • Hoeser, T., Bachofer, F., & Kuenzer, C. (2020). Object detection and image segmentation with deep learning on Earth observation data: A review—Part II: Applications. Remote Sensing, 12(18), 3053. https://doi.org/10.3390/rs12183053
  • Tong, K., Wu, Y., & Zhou, F. (2020). Recent advances in small object detection based on deep learning: A review. Image and Vision Computing, 97, 103910. https://doi.org/10.1016/j.imavis.2020.103910
  • Wang, Y., Bashir, S. M. A., Khan, M., Ullah, Q., Wang, R., Song, Y., & Niu, Y. (2022). Remote sensing image super-resolution and object detection: Benchmark and state of the art. Expert Systems with Applications, 197, 116793. https://doi.org/10.1016/j.eswa.2022.116793
  • Bakırman, T., & Sertel, E. (2023). A benchmark dataset for deep learning-based airplane detection: HRPlanes. International Journal of Engineering and Geosciences, 8(3), 212–223. Retrieved from https://dergipark.org.tr/tr/download/article-file/2392282
  • Mahendrakar, T., Ekblad, A., Fischer, N., White, R., Wilde, M., & Kish, B. (2022, March). Performance study of YOLOv5 and Faster R-CNN for autonomous navigation around non-cooperative targets. IEEE Aerospace Conference.
  • Thapa, A., Horanont, T., Neupane, B., & Aryal, J. (2023). Deep learning for remote sensing image scene classification: A review and meta-analysis. Remote Sensing, 15(19), 4804. https://doi.org/10.3390/rs15194804
  • Cheng, G., Xie, X., Han, J., Guo, L., & Xia, G. S. (2020). Remote sensing image scene classification meets deep learning: Challenges, methods, benchmarks, and opportunities. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 3735–3756. https://doi.org/10.1109/JSTARS.2020.3005403
  • Polat, N., & Memduhoğlu, A. (2024). An unmanned aerial vehicle-based investigation of roof patch suitability for solar panel installation. International Journal of Engineering and Geosciences, 9(2), 281–291. https://dergipark.org.tr/tr/download/article-file/3678854
  • Akar, Ö., Saralioğlu, E., Güngör, O., & Bayata, H. F. (2024). Semantic segmentation of very-high spatial resolution satellite images: A comparative analysis of 3D-CNN and traditional machine learning algorithms for automatic vineyard detection. International Journal of Engineering and Geosciences, 9(1), 12–24. Retrieved from https://dergipark.org.tr/en/pub/ijeg/issue/82506/1252298
  • Qasem, R. (2023, May 14). Customize MMSegmentation models. Medium. https://medium.com/@rabee.qasem93/customize-mmsegmentation-models-870054ef803
  • Li, B. (2022, July 19). Train semantic segmentation model with custom dataset using mmsegmentation. Medium. https://bo-li.medium.com/train-semantic-segmentation-model-with-custom-dataset-using-mmsegmentation-90d798d3f1bd
  • Zhang, C., Lam, K. M., & Wang, Q. (2023). Cof-net: A progressive coarse-to-fine framework for object detection in remote-sensing imagery. IEEE Transactions on Geoscience and Remote Sensing, 61, 1–17. https://doi.org/10.1109/TGRS.2022.3233881
  • IEEE. (2021). MLCM: Multi-label confusion matrix. IEEE Journals & Magazine. https://ieeexplore.ieee.org/abstract/document/9711932
  • Vujovic, Ž. (2021). Classification model evaluation metrics. International Journal of Advanced Computer Science and Applications, 12, 599–606. https://doi.org/10.14569/IJACSA.2021.0120670
  • Unel, F. B., Kusak, L., & Yakar, M. (2023). GeoValueIndex map of public property assets generating via Analytic Hierarchy Process and Geographic Information System for Mass Appraisal: GeoValueIndex. Aestimum, 82, 51-69 .
  • Hashemi-Beni, L., & Gebrehiwot, A. (2020). Deep learning for remote sensing image classification for agriculture applications. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIV-M-2-2020, 51–54. https://doi.org/10.5194/isprs-archives-XLIV-M-2-2020-51-2020
  • Kaur, H., & Sandhu, N. K. (2024). Evaluating the effectiveness of the proposed system using F1 score, recall, accuracy, precision, and loss metrics compared to prior techniques. International Journal of Communication Networks and Information Security, 15(4), 368–383.
  • Ernst, F.B., Köksal, B., (2024). Creating Climate Change Scenarios Using Geodesing Method: Pütürge District Example. Advanced Geomatics. 4(1); 01-08.
  • Tabakoğlu, C. (2024). A Review: Detection types and systems in remote sensing. Advanced GIS, 4(2), 100–105.Retrieved from https://publish.mersin.edu.tr/index.php/agis/article/view/1560
  • Ayalke, G. Z., & Şişman, A. (2024). Google Earth Engine kullanılarak makine öğrenmesi tabanlı iyileştirilmiş arazi örtüsü sınıflandırması: Atakum, Samsun örneği. Geomatik, 9 (3), 375-390. DOI: 10.29128/geomatik.1472160
  • Makhmudov, R., & Teymurov, M. (2024). Importance of using GIS software in the process of application of Analogue terrains and Counter-approach technologies in water resources assessment. Advanced Remote Sensing, 4(1), 36-45.
  • Demirel, Y., & Türk, N. (2024). Automatic detection of active fires and burnt areas in forest areas using optical satellite imagery and deep learning methods. Mersin Photogrammetry Journal, 6 (2), 66-78. https://doi.org/10.53093/mephoj.1575877
There are 39 citations in total.

Details

Primary Language English
Subjects Land Management
Journal Section Research Article
Authors

Vilma Tomco 0009-0003-3394-5502

Erika Grabocka 0009-0003-8360-5979

Miranda Harizaj 0000-0001-6107-7288

Early Pub Date January 24, 2025
Publication Date
Submission Date November 18, 2024
Acceptance Date December 24, 2024
Published in Issue Year 2025 Volume: 10 Issue: 2

Cite

APA Tomco, V., Grabocka, E., & Harizaj, M. (2025). Leveraging Deep Learning in Remote Sensing: A Novel Approach for Agricultural Greenhouse Detection and Innovation Management. International Journal of Engineering and Geosciences, 10(2), 221-230. https://doi.org/10.26833/ijeg.1587264
AMA Tomco V, Grabocka E, Harizaj M. Leveraging Deep Learning in Remote Sensing: A Novel Approach for Agricultural Greenhouse Detection and Innovation Management. IJEG. January 2025;10(2):221-230. doi:10.26833/ijeg.1587264
Chicago Tomco, Vilma, Erika Grabocka, and Miranda Harizaj. “Leveraging Deep Learning in Remote Sensing: A Novel Approach for Agricultural Greenhouse Detection and Innovation Management”. International Journal of Engineering and Geosciences 10, no. 2 (January 2025): 221-30. https://doi.org/10.26833/ijeg.1587264.
EndNote Tomco V, Grabocka E, Harizaj M (January 1, 2025) Leveraging Deep Learning in Remote Sensing: A Novel Approach for Agricultural Greenhouse Detection and Innovation Management. International Journal of Engineering and Geosciences 10 2 221–230.
IEEE V. Tomco, E. Grabocka, and M. Harizaj, “Leveraging Deep Learning in Remote Sensing: A Novel Approach for Agricultural Greenhouse Detection and Innovation Management”, IJEG, vol. 10, no. 2, pp. 221–230, 2025, doi: 10.26833/ijeg.1587264.
ISNAD Tomco, Vilma et al. “Leveraging Deep Learning in Remote Sensing: A Novel Approach for Agricultural Greenhouse Detection and Innovation Management”. International Journal of Engineering and Geosciences 10/2 (January 2025), 221-230. https://doi.org/10.26833/ijeg.1587264.
JAMA Tomco V, Grabocka E, Harizaj M. Leveraging Deep Learning in Remote Sensing: A Novel Approach for Agricultural Greenhouse Detection and Innovation Management. IJEG. 2025;10:221–230.
MLA Tomco, Vilma et al. “Leveraging Deep Learning in Remote Sensing: A Novel Approach for Agricultural Greenhouse Detection and Innovation Management”. International Journal of Engineering and Geosciences, vol. 10, no. 2, 2025, pp. 221-30, doi:10.26833/ijeg.1587264.
Vancouver Tomco V, Grabocka E, Harizaj M. Leveraging Deep Learning in Remote Sensing: A Novel Approach for Agricultural Greenhouse Detection and Innovation Management. IJEG. 2025;10(2):221-30.