Review
BibTex RIS Cite

Identification of H2/CO2 Separation Performance of Inorganic Porous Adsorbents via Molecular Simulations

Year 2022, Volume: 9 Issue: 3, 91 - 96, 08.09.2022
https://doi.org/10.30897/ijegeo.1061181

Abstract

The H2/CO2 gas separation is extremely emerging both for the production of H2 which is useful as an energy source/fuel due to high energy content per unit of weight and capturing the CO2 emissions that cause global warming and climate change. The adsorption method has come to the fore because it requires less energy for the separation process than other technologies and has a reduced environmental impact. In order to determine the promising adsorbent, it is really time-consuming and cost-intensive to carry out experimental studies for each adsorbent material. Since the capability and efficiency of molecular simulation methods are too high, recently they are emerged to reveal the adsorption performance of existing adsorbent materials. In this review study, we aimed to identify the performance of inorganic porous adsorbents that were defined by molecular simulation approaches. For this scope, we considered three metrics for adsorbents such as CO2 adsorption capacity, CO2/H2 adsorption selectivity, and isotherm obtained depending on pressure. Accordingly, it was proposed from the literature survey that HP adsorbent for pure CO2 adsorption, PAF-1 for CO2/H2 adsorption selectivity and diamondyne for CO2/H2 adsorption selectivity at high pressures attracted attention. As a result, we aimed to guide the experiments in choosing the adsorbent material from the data collected and proposed from simulation studies.

Supporting Institution

Scientific and Technological Research Council of Turkey-TUBITAK

Project Number

120M180

Thanks

This work was supported in part by the Scientific and Technological Research Council of Turkey-TUBITAK (Grant# 120M180) and TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRUBA resources).

References

  • [1] Zito, P. F. Caravella, A. Brunetti, A. Drioli, E. Barbieri, G. (2018). CO2/H2 Selectivity Prediction of NaY, DD3R, and Silicalite Zeolite Membranes. Ind. Eng. Chem. Res. 57. 11431−11438.
  • [2] Lin, S., Harada, M., Suzuki, Y., Hatano, H., (2002). Hydrogen Production from Coal by Separating Carbon Dioxide During Gasification. Fuel, 81: 2079–85.
  • [3] S. Y. Lin, M. Harada, Y. Suzuki and H. Hatano (2004). Continuous Experiment Regarding Hydrogen Production by Coal/CaO Reaction with Steam (I) Gas Products. Fuel 83. 869.
  • [4] Mason, J. A. Sumida, K. Herm, Z. R. Krishna, R. Long, J. R (2011). Evaluating Metal-Organic Frameworks for Post-Combustion Carbon Dioxide Capture via Temperature Swing. Adsorption. Energy Environ. Sci. 4. 3030−3040.
  • [5] Ben-Mansour, R. Qasem, N. A. A (2018). Management an Efficient Temperature Swing Adsorption (TSA) Process for Separating CO2 from CO2/N2 Mixture Using Mg-MOF-74. Energy Convers. Manag. 156. 10−24.
  • [6] Kamakoti, P. Leta, D. P. Deckman, H. W. Ravikovitch, P. I. Anderson, T. N. (2014). Pressure-Temperature Swing Adsorption Process. U.S. Patent 8. 784. 534B2.
  • [7] Z. Ç. Okumuş., T. H. Doğan (2019). Removal of Water from Biodiesel with Resin: Isothermal, Kinetic and Thermodynamic Investigation of Adsorption. European Journal of Science and Technology 15. 561-570.
  • [8] Janiak, C., Vieth, J. K. (2010). MOFs, MILs and More: Concepts, Properties and Applications for Porous Coordination Networks (PCNs). New J. Chem. 34. 2366.
  • [9] C. Saridara, S. Mitra (2005). Chromatography on self-assembled carbon nanotubes. Analytical Chemistry 77. 7094–7097.
  • [10] Pellerano, M., Pre, P., Kacem, M., Delebarre, A. (2009). CO2 capture by adsorption on activated carbons using pressure modulation. Energy Procedia 1. 647–653.
  • [11] Bhatia, S.K., Tran, K., Nguyen, T.X., Nicholson, D. (2004). High-pressure adsorption capacity and structure of CO2 in carbon slit pores: theory and simulation. Langmuir 20. 9612–9620.
  • [12] Frenkel, D., Smit, B. (2002). Understanding Molecular Simulation: From Algorithms to Applications. 2nd ed. Academic Press: San Diego.
  • [13] M. Yiannourakou, P. Ungerer, B. Leblanc, X. Rozanska, P. Saxe, S. Vidal-Gilbert, F. Gouth and F. Montel (2013). Molecular Simulation of Adsorption in Microporous Materials. Oil & Gas Science and Technology – Rev. IFP Energies nouvelles, 68. 977-994.
  • [14] G. Lei, Q. Li, H. Liu, Y. Zhang. (2021). Selective Adsorption of CO2 by Hex-star phosphorene from Natural Gas: Combining Molecular Simulation and Real Adsorbed Solution Theory. Chemical Engineering Science Volume 231. 116283.
  • [15] K. V. Kumar, K. Preuss, L. Lu, Z. Xiao Guo, and M. M. Titirici (2015). Effect of Nitrogen Doping on the CO2 Adsorption Behavior in Nanoporous Carbon Structures: A Molecular Simulation Study. J. Phys. Chem. C, 119, 39. 22310–22321.
  • [16] G. Avci, S. Velioglu and S. Keskin (2018). High-throughput Screening of MOF Adsorbents and Membranes for H2 Purification and CO2 Capture. ACS Appl. Mater. Interfaces 10, 39. 33693–33706.
  • [17] G. O. Aksu, H. Daglar, C. Altintas, and S. Keskin (2020). Computational Selection of High-Performing Covalent Organic Frameworks for Adsorption and Membrane-Based CO2/H2 Separation. J. Phys. Chem. C, 124, 41. 22577–22590.
  • [18] Krishna, R. van Baten, J. M. (2011). In Silico Screening of Metal−Organic Frameworks in Separation Applications. Phys. Chem. Chem. Phys. 2011, 13. 10593−10616.
  • [19] R. Babarao, S. and D. Jiang (2011). Functionalizing Porous Aromatic Frameworks with Polar Organic Groups for High-Capacity and Selective CO2 Separation: A Molecular Simulation Study. Langmuir 27. 3451–3460.
  • [20] H. Wang and D. Cao J. (2015). Diffusion and Separation of H2, CH4, CO2, and N2 in Diamond-Like Frameworks. Phys. Chem. C 119. 6324−6330.
  • [21] Z. Yang, X. Peng and D. Cao (2013). Carbon Dioxide Capture by PAFs and an Efficient Strategy to Fast Screen Porous Materials for Gas Separation. J. Phys. Chem. C 117. 8353−8364.
Year 2022, Volume: 9 Issue: 3, 91 - 96, 08.09.2022
https://doi.org/10.30897/ijegeo.1061181

Abstract

Project Number

120M180

References

  • [1] Zito, P. F. Caravella, A. Brunetti, A. Drioli, E. Barbieri, G. (2018). CO2/H2 Selectivity Prediction of NaY, DD3R, and Silicalite Zeolite Membranes. Ind. Eng. Chem. Res. 57. 11431−11438.
  • [2] Lin, S., Harada, M., Suzuki, Y., Hatano, H., (2002). Hydrogen Production from Coal by Separating Carbon Dioxide During Gasification. Fuel, 81: 2079–85.
  • [3] S. Y. Lin, M. Harada, Y. Suzuki and H. Hatano (2004). Continuous Experiment Regarding Hydrogen Production by Coal/CaO Reaction with Steam (I) Gas Products. Fuel 83. 869.
  • [4] Mason, J. A. Sumida, K. Herm, Z. R. Krishna, R. Long, J. R (2011). Evaluating Metal-Organic Frameworks for Post-Combustion Carbon Dioxide Capture via Temperature Swing. Adsorption. Energy Environ. Sci. 4. 3030−3040.
  • [5] Ben-Mansour, R. Qasem, N. A. A (2018). Management an Efficient Temperature Swing Adsorption (TSA) Process for Separating CO2 from CO2/N2 Mixture Using Mg-MOF-74. Energy Convers. Manag. 156. 10−24.
  • [6] Kamakoti, P. Leta, D. P. Deckman, H. W. Ravikovitch, P. I. Anderson, T. N. (2014). Pressure-Temperature Swing Adsorption Process. U.S. Patent 8. 784. 534B2.
  • [7] Z. Ç. Okumuş., T. H. Doğan (2019). Removal of Water from Biodiesel with Resin: Isothermal, Kinetic and Thermodynamic Investigation of Adsorption. European Journal of Science and Technology 15. 561-570.
  • [8] Janiak, C., Vieth, J. K. (2010). MOFs, MILs and More: Concepts, Properties and Applications for Porous Coordination Networks (PCNs). New J. Chem. 34. 2366.
  • [9] C. Saridara, S. Mitra (2005). Chromatography on self-assembled carbon nanotubes. Analytical Chemistry 77. 7094–7097.
  • [10] Pellerano, M., Pre, P., Kacem, M., Delebarre, A. (2009). CO2 capture by adsorption on activated carbons using pressure modulation. Energy Procedia 1. 647–653.
  • [11] Bhatia, S.K., Tran, K., Nguyen, T.X., Nicholson, D. (2004). High-pressure adsorption capacity and structure of CO2 in carbon slit pores: theory and simulation. Langmuir 20. 9612–9620.
  • [12] Frenkel, D., Smit, B. (2002). Understanding Molecular Simulation: From Algorithms to Applications. 2nd ed. Academic Press: San Diego.
  • [13] M. Yiannourakou, P. Ungerer, B. Leblanc, X. Rozanska, P. Saxe, S. Vidal-Gilbert, F. Gouth and F. Montel (2013). Molecular Simulation of Adsorption in Microporous Materials. Oil & Gas Science and Technology – Rev. IFP Energies nouvelles, 68. 977-994.
  • [14] G. Lei, Q. Li, H. Liu, Y. Zhang. (2021). Selective Adsorption of CO2 by Hex-star phosphorene from Natural Gas: Combining Molecular Simulation and Real Adsorbed Solution Theory. Chemical Engineering Science Volume 231. 116283.
  • [15] K. V. Kumar, K. Preuss, L. Lu, Z. Xiao Guo, and M. M. Titirici (2015). Effect of Nitrogen Doping on the CO2 Adsorption Behavior in Nanoporous Carbon Structures: A Molecular Simulation Study. J. Phys. Chem. C, 119, 39. 22310–22321.
  • [16] G. Avci, S. Velioglu and S. Keskin (2018). High-throughput Screening of MOF Adsorbents and Membranes for H2 Purification and CO2 Capture. ACS Appl. Mater. Interfaces 10, 39. 33693–33706.
  • [17] G. O. Aksu, H. Daglar, C. Altintas, and S. Keskin (2020). Computational Selection of High-Performing Covalent Organic Frameworks for Adsorption and Membrane-Based CO2/H2 Separation. J. Phys. Chem. C, 124, 41. 22577–22590.
  • [18] Krishna, R. van Baten, J. M. (2011). In Silico Screening of Metal−Organic Frameworks in Separation Applications. Phys. Chem. Chem. Phys. 2011, 13. 10593−10616.
  • [19] R. Babarao, S. and D. Jiang (2011). Functionalizing Porous Aromatic Frameworks with Polar Organic Groups for High-Capacity and Selective CO2 Separation: A Molecular Simulation Study. Langmuir 27. 3451–3460.
  • [20] H. Wang and D. Cao J. (2015). Diffusion and Separation of H2, CH4, CO2, and N2 in Diamond-Like Frameworks. Phys. Chem. C 119. 6324−6330.
  • [21] Z. Yang, X. Peng and D. Cao (2013). Carbon Dioxide Capture by PAFs and an Efficient Strategy to Fast Screen Porous Materials for Gas Separation. J. Phys. Chem. C 117. 8353−8364.
There are 21 citations in total.

Details

Primary Language English
Subjects Environmental Engineering
Journal Section Review Articles
Authors

Melih Doğancı 0000-0002-3753-4757

Sadiye Velioğlu 0000-0002-4812-3611

Project Number 120M180
Publication Date September 8, 2022
Published in Issue Year 2022 Volume: 9 Issue: 3

Cite

APA Doğancı, M., & Velioğlu, S. (2022). Identification of H2/CO2 Separation Performance of Inorganic Porous Adsorbents via Molecular Simulations. International Journal of Environment and Geoinformatics, 9(3), 91-96. https://doi.org/10.30897/ijegeo.1061181